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ARTICLE INFO                                       ABSTRACT 
 
 

For further understanding optical secure communication, we study chaos synchronization 
modeled by the nonlinear Schrödinger equation with Kerr law nonlinearity. By Melnikov method, 
we get the chaos signal which generated from rupturing of homoclinic orbits. By using feedback 
control technology and Lyapunov stability theory, we obtain the sufficient criteria of of chaos 
synchronization. Finally, we analysis the effects of all parameters on synchronization. Result 
shows that faster wave speed, higher perturbation amplitude and larger nonlinear dispersion 
coefficient can delay the process of synchronization. Meanwhile, larger control coefficient can 
speed up the process of synchronization. 
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INTRODUCTION 
 
Optical communication is an important technology which has been applied to various aspects of society. Multimedia is applied by 
optical FFH-CDMA communication systems (Thiruchelvi et al., 2002). Ring launching scheme is analyzedby hollow optical fiber 
mode converter (Bunge et al., 2006). Data encryption of optical fibre communication is considered based on pseudo-random 
spatial light modulation (Kowalskiand Zyczkowski, 2016). Recently, large capacity and long distance are required in optical fiber 
communication. Optical soliton as the most ideal carriers of information just meets these demands. Optical soliton like-pulses is 
obtained in ring-cavity fiber lasers of carbon nanotubes (Younis and Rizvi, 2016), controllable behaviors of spatiotemporal 
breathers is considered in a generalized variable-coefficient nonlinear Schrödinger model from arterial mechanics and optical 
fibers (Chen and Zhu, 2015), transmission characteristics of dark solitons have been studied in homogeneous optical fibers 
modeled by nonlinear Schrödinger equation (Pan, et al., 2015). With the development of technology and military, traditional 
communication can not grantee the safety and effectiveness of the information transmission. So we want to study the optical secret 
communication. Chaos synchronization technology is an effective method to study secure communication. Long-distance multi-
channel bidirectional chaos communication has been constructed by synchronized VCSELs subject to chaotic signal injection (Xie 
et al., 2016), Different types of synchronization in coupled network based chaotic circuits (Srinivasan, 2016), chaos 
synchronization is studied in two weakly coupled delay-line oscillators(Levy and Horowitz,2012), dynamics and synchronization 
are applied in coupled fractional-order nonlinear electromechanical systems (Ngueuteu et al.., 2012). The purpose of this paper is 
to devise optical secure communications based on the nonlinear Schrödinger equation by chaos synchronization. The inspiration 
comes from the fact as follows. In the process of the actual transmission, the signals are influenced by the external environmental 
perturbations, so we consider perturbed nonlinear Schrödinger equation with Kerr law nonlinearity 
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where )3,2,1( ii are real parameters, is a positive constant, 0,  denote the amplitude and the frequency of the parametric 

excitation, respectively. More details for the model can be seen in (Taghizadeh et al., 2013; Yin et al., 2014). This paper is 
organized as follows. In Section 2, we proved that the soliton can evolves into chaos under periodic perturbation proved by 
Melnikov method. In Section 3, we construct a master-salve synchronization scheme and find out the criteria for chaos 
synchronization. The numerical investigation is given in Section 4. Last is the conclusion. 
 
 
2  Soliton evolves into chaos under perturbation 
 
Supposed that (1) has traveling wave solutions in the form 
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here c  representing the transmission speed of wave  .0c
 

 
By the way of (Taghizadeh et al., 2013),we get 
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where 32
3

2

3

1
  refer to the parametric of linear and nonlinear terms. Equation (3) is the fiber-optic signal transmission 

system in ideal environment.  
 

By setting 11   and ,ab  the system (3) can be rewritten as the following form   
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If ,0  the equation (4) is changed into (5) 
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Analysis of homoclinic orbits 

We consider the homo clinic orbits of system (5), which has three equilibrium points )0,(1


c
E  , )0,(2



c
E  and )0,0(3E . Let 

iEJ

be the Jacobian matrix for these equilibrium points and we have 
 













03

10
2ac

J
iE 

. 

 

It is easy to find that its eigenvalues are   cJ
iE 22,1   and   cJ E 

33 . So the 1E , 2E  are the center equilibrium and 

)0,0(3E  is a saddle point for any 0c . 

 
Furthermore, system (5) has the following Hamiltonian function: 
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where h  is a constant. It is noted that the Hamiltonian function is composed of two homoclinic orbits at the point .3E  According 

to the bifurcation theory (13), system (5) has two optical solitons followed by two homoclinic orbits: Positive one achieve its crest 

at 



c2

 , and negative one has valley at 



c2

 (see Fig. 1 as 96.0  and 5.2c ). 
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Figure 1. Phase portrait and the profile of optical soliton of unperturbed system 
 
Melnikov analysis 
 
For searching chaos signal, we will take advantage of the Melnikov’s method. The corresponding Melnikov function for system 
(3) is given as 
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and ))(),((),( 00 tbtaba  is unperturbed homoclinic orbit. Using the above results and Melnikov’s 

theorem, the chaos occurs if 0)( 0 tM  and  0)( 0
' tM for some .0t It is easy to find 00 t  satisfying  
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So the optical soliton always turns into chaos under the perturbation formed as (1). To verify the above fact, we will investigate 
the Lyapunov exponents and phase portraits of system (4). Parameters of system (4) used for simulations are listed as follows: 

5.0,98.0,5.2  c and .17.0 Then the Lyapunov exponents are shown in Fig. 2(a) and the phase portraits are 

shown in Fig. 2(b), It is clearly that chaos always appears for all given cases. 

 

 

 

Figure 2. )(a Lyapunov exponents versus   of perturbed system, )(b The corresponding portraits of .ba   

Global chaos synchronization method 
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Construction of error system 
 
The equivalent vector form of chaotic oscillator (3)as flows 
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where ctt  )cos()(  . Next we construct a master-salve synchronization scheme (Wu, 2008) for two chaos oscillators 

coupled by a linear state error feedback controller )()( zxKtu  : 

 









),()()(:

),()(:

tzfztAZS

xfxtAXM


                                      (11) 

 

where 
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22RK denotes a constant control matrix. 

Define an error variable .zxe  since 
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With ,)( 2
111

2
1 zzxxtF   we can obtain a time -varied error system   
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Next, we are seeking to find such a control matrix K on any initial conditions of )0(x  and )0(z , the trajectories )(tx and )(tz
satisfy 
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Where   denotes Euclidean norm of a vector . 

 
Criteria for chaos synchronization 
 
According to Lyapunov’s direct method we get the criteria for chaos synchronization as follows. 
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Then the master-salve scheme (11) achieves chaos synchronization . 
 
Proof . Take a quadratic Lyapunov function 
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The derivative of )(eV  with respect to time along the trajectory of error system (13) equals 
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According to Lyapunov stability theory, the inequality (16) represents a sufficient condition for global asymptotic stability of error 
system (13) at the origin. According to (10) and (12), we can obtain  
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From Fig.2 (b),we know that the trajectory of chaotic system (3) is bounded, so there exists a constant 0m satisfy mtx )(1  

for any 0t . Hence , we have 
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So the inequalities (15)-(17) hold . The proof is finished.# 
 

Numerical simulations 
 

In applications, it is desired that the structure of synchronization controller is as simple as possible. So we find out the two special 
cases for the Lemma. 
 

Case 1 For the inequalities (15)-(17) , setting 222111 , kkkk  and ,02112  kk   then we have the inequalities (19)-(21). 
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Here we choose an control matrix  21 ,kkdiagK   and a symmetric positive define matrix P selected like the Lemma. Then 

the system (11) can also achieve global chaos synchronization. 
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 Case2  For the inequalities (19)-(21),setting ,21 kkk  then we have the inequalities (22)-(23). 
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this matrix we can obtain the flowing algebraic synchronization criterion by (22) and (23). 
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According calculate ,we obtain the synchronization condition : 
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Now we analyze the performance of chaotic secure communication system, the system (13) was simulated in Matlab-Simulink and 
the result are shown in Fig3-fig7. 
 
 

  

 

Figure 3. Effect of varying k . )(a error ;1e )(b error .2e  

 

  

 

Figure. 4 Effect of varying . )(a error ;1e )(b error .2e  
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Figure 5. Effect of varying  . )(a error ;1e )(b error .2e  

 

 

 

Figure 6. Effect of varying c . (a) error ;1e (b) error .2e  
 

 

 

 

Figure 7. Effect of varying . )(a error ;1e )(b error ;1e )(c error ;1e )(d error .1e  
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Conclusion 
 
In this paper we have proposed a new chaotic secure communication scheme. The sufficient criteria for chaos synchronization of 
the master-salve system are obtained. Numerical simulations have demonstrated the accuracy of those sufficient criteria. 
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