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ARTICLE INFO                                       ABSTRACT 
 
 

Viscoelastic properties of polymeric materials are of fundamental importance to understand their 
mechanical behaviour, especially dealing with dynamic and vibration problems. In the present 
research, the generalized and modified yield theory of Goldberg constitutive model is used to 
predict the time dependent inelastic response of polymer materials. The approach that uses the 
complex-value amplitude relations is preferred rather than direct numerical integration of the 
complete set of constitutive equation for the material, in the other words, to simulate the response 
in terms of amplitudes, the relations between the amplitudes of main field variables are 
established with making use of complex moduli concept. It is usually done by making use of 
equivalent linearization technique. It is shown that this technique leads to overestimation of stress 
amplitude. To avoid this, the modified equivalent linearization technique is applied. 
Characterization of the complex moduli dependence on frequency and temperature as well as 
amplitude of stress intensity is performed. Results demonstrate a weak dependence of imaginary 
part of compliance moduli on the frequency of the loading within the wide interval of it, while 
variation of imaginary part of compliance moduli with increasing temperature is more 
pronounced. 
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INTRODUCTION 
 

Viscoelastic or elasto-plastic material under cyclic loading 
(beyond the elastic domain) yields a hysteresis loop in the 
stress-strain relationship. In the other words, a part of the 
strain energy is not recovered but dissipated during the cycle. 
This phenomenon is usually called the “dissipative heating” 
(Beards, 1996 and Zhuk, 2004). These materials can exhibit 
specific time dependent properties and can be deformed 
inelastically being exposed to high stress levels. There are 
currently two approaches to address this issue. In the first 
approach, the complex set of constitutive equations governing 
response of numerous internal parameters is introduced. The 
relationship between these parameters and the strain and 
temperature history yields evolution equations, which account 
for both dynamic recovery, and also creep. For polymers, the 
constitutive modeling utilizes, either directly or with some 
modifications, viscoplastic constitutive equations which have 
been developed for metals. The generalized yield theories of 
Schapery, Perzyna, Frank and Brockman, Goldberg and others 
(Bodner, 1975; Frank, 2001, Goldberg, 2002 and Zaïri, 2005), 
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apply to identify this relationship. It is generally admitted that 
to describe the material time dependent behavior accounting 
for different features and peculiarities over the cycle of 
vibration, a direct integration of the set of constitutive 
equations is necessary. Usually it appears to be time and 
resource costly for multi-cyclic processes. Within the second 
approach, the approximate amplitude relations are used to 
characterize the cyclic response of the material, i.e. the 
relations between amplitudes of the main mechanical field 
parameters over the cycle (Senchenkov, 2004). Naturally, the 
application of this technique is justified for the class of 
problems where there is no need for detailed information on 
the material response during the cycle (life prediction of the 
structure, failure due to overheating as a result of internal 
dissipation etc.). The key point of the amplitude theories is 
concept of complex moduli (Senchenkov, 2004). For an 
inelastic (particularly viscoelastic) material, the modulus 
governing the relation between strain and stress amplitudes is 
represented by a complex quantity with real and imaginary 
parts referred to as storage and loss modulus respectively. The 
former characterizes elastic response of material and the latter 
one defines the dissipative ability of the material (Senchenkov, 
1996). In other words, the energy is stored during the loading 
part of cycle and released under unloading phase, whereas the 
energy loss occurs during complete cycle due to dissipative 
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properties of the material. The drawback of the approach was 
the overestimation of stress amplitudes as a result of making 
use of standard equivalent linearization technique for 
calculation of both storage and loss moduli. To overcome this 
difficulty, the modified scheme was proposed in (Zhuk, 2004; 
Senchenkov, 2004 and Hashemi, 2015). But applicability of 
the method should be verified for each particular type of the 
material. Considering the importance of examination of self-
heating effect under cyclic loading in polymeric materials, 
researches done on time dependent behavior of polymeric 
materials are mainly aimed to study the viscoelastic behavior 
in different frequency application over wide ranges of loading 
amplitudes. These researches show that, the temperature will 
change with respect to the frequency spectrum of cyclically 
loading due to the stress relaxation processes in the material, 
thus it is necessary to determine the dependence of the modal 
characteristics in a frequency domain on mechanical properties 
at special steady state of temperature. This paper is devoted to 
investigation of the technique applicability to the typical 
viscoelastic materials such as PR-520, and to determination the 
frequency and temperature effects on complex compliance 
moduli for wide range of force loading amplitudes. Particular 
attention will be paid to simulation of cyclic response of pure 
polymer material (PR-520) to monoharmonicforce loading in 
the frame of the second approach. 
 

Constitutive relations 
 
To accurately predict an overall performance and lifetime of 
polymer, it is necessary to model time dependent and inelastic 
responses. Viscoelastic materials such as polymer materials 
have the particularity of possessing viscous, elastic and, under 
some conditions, plastic behavior. Constitutive material 
models of viscoelastic solids have been proposed for isotropic 
materials undergoing small deformation gradients whereas the 
inelastic strain can be calculated as the difference of the total 
strain and elastic strain. Goldberg et al. (Goldberg, 2002 and 
Gilat, 2006), proposed a model for predicting the viscoplastic 
response of neat polymers, utilizing a set of state variables as 
an indication of the resistance of polymeric chains against 
flow. It should also be mentioned that polymer’s mechanical 
properties and loading/strain rate are the two main parameters 
that govern the nonlinear response of the polymer. The 
formulation employed in this model is based on that used by 
Pan and co-workers (Hashemi, 2015). According to this 
model, the inelastic strain components can be expressed in 
terms of the deviatoric stress components as follows 
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where, in
ijε  is the inelastic strain rate tensor which can be 

defined as a function of deviatoric stress( ijs ) and the state 

variables Z and  . The state variable  controls the level of 

the hydrostatic stress effects. 
2J is the second invariant of the 

deviatoric stress tensor that can be expressed as a function 
of 

ijσ . Moreover, 
0D  and n  are material constants; 

0D  

represents the maximum inelastic strain rate and n  controls the 
rate dependency of the material. The equivalent effective 
stress(

e ), also be defined as a function of the mean stress, 

such that the summation of the normal stress components 
kkσ  

is three times of the mean stress, as follows 
 

,33 2 kke J   (2) 

 
the evolution of the internal stress state variable Z  and the 
hydrostatic stress state variable   are defined by the 
equations 
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where q  is a material constant representing the “hardening” 

rate, and 
1Z and

1  are material constants representing the 

maximum values of Z and  , respectively. The initial values 
of Z  and   are defined by the material constants 

0Z and
0 . 

The term in
ee  in equations 3 and 4 represents the effective 

deviatoric inelastic strain rate. 
 

Complex moduli approach 
 
In this investigation, approximate model of inelastic behavior 
developed in (Zhuk, 2004 and Frank, 2001), for the case of 
proportional force harmonic loading has been used. In this 
case, the cyclic properties of the material are described in 
terms of complex compliance moduli. It is important to notice 
that the inelastic deformation is considered to be 
incompressible and thermal expansion is dilatational, it may be 
more convenient in some applications to separate the isotropic 
stress-strain relations into deviatoric and dilatational 
components that can be shown by equations as 
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where J  is the compliance modulus, 
VK  is the bulk modulus, i

, j , 3,2,1k  and repeated index implies a summation over. 

Due to incompressibility of plastic deformation, 0in
kkε , i.e. the 

plastic strain rate is deviatoric: .inin
ijij eε  

 
 
According to this model, if a body as a system subjected to 
harmonic deformation or loading, then its response is also 
close to harmonic law 
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The complex amplitudes of the deviator of total strain, 
ije~ , 

inelastic strain, in
ije~ , and the stress deviator, 

ijs , are related in 

the N
th cycle by the complex compliance modulus, 

NJ
~ , and 

plasticity factor, 
JN

~ ,under force harmonic loading as shown 

below 
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here 
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and N  is the cycle number; )(  and )(  denote the real and 

imaginary parts of complex quantities. The compliance 
modulus and plasticity factor are functions of the intensity of 
the stress-range tensor, frequency and temperature 
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where the square of the intensity of stress-range tensor is 

calculated as ijijijij sssss 2
0 . 

 
The imaginary parts of the complex moduli and plasticity 
factor are determined from the condition of equality of the 
energies dissipated over a period and are calculated according 
to the formula 
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where D is the rate of dissipation of mechanical energy. 
 

The real parts are found with making use of the condition that 
generalized cyclic diagrams ),( 0 see aNaN  and 

),( 0 see paNpaN  , which relate the ranges of the strain and 

plastic-strain intensities in the Nth cycle, coincide in the frame 
of the complete and approximate approaches 
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where
NJ   and 

JN  are the sought-for real part of compliance 

moduli and plasticity factor. In spite of the fact that the single-
frequency approximation based on harmonic linearization has 
a well agreement with precise model of nonlinear behavior, it's 
necessary to analyze its practical accuracy for specific classes 
of problems. As mentioned in the introduction, the second 
approach is based on the concept of complex moduli, which 
are determined by standard and modified techniques of 
equivalent linearization.  
 
 
 
 
 
 
 
 
It is important to notice that, the imaginary parts of complex 
moduli are defined by the exact expression for rate of 
dissipation averaged over the period of cyclic loading while to 
improve the accuracy of real parts of complex compliance 
moduli the modified approach is proposed as shown in 
equation 10. According to equation 10, the complex 
compliance moduli for isothermal loading case depend on the 

frequency, temperature and amplitude of force loading only. 
The purpose of this paper is to investigate the influence of 
these parameters on complex compliance moduli. 
 
Numerical technique and the material properties 
 
In the present work, as it was mentioned above, due to 
significant nonlinearity of the stiff type, the numerical 
integration of Goldberg equations was adopted. To solve the 
implicit equation 1, one should utilize an appropriate 
numerical discretization technique. Three step scheme of 
attacking the problem of complex compliance moduli 
determination was designed. At the first step, the elastic-
viscoplastic response of the material to harmonic deformation 
was calculated by numerical technique for different amplitudes 
of loading stress at different frequencies and temperature. At 
the second step, the stabilized cyclic stress–strain and 
inelastic-strain–strain diagrams were obtained for the whole 
set of calculated data. At the final step, the complex 
compliance moduli were calculated by the averaging over the 
period of vibration of the results of direct integration and 
making use of cyclic diagrams and formulae 9 and 10. The 
system of nonlinear ordinary differential equations that 
describes the polymer response to harmonic loading in the case 
of pure shear consists of the one-dimensional equations of 
Goldberg model comprising equations 1, 3, 4 are solved. 
    
The law of strain deviator variation ,sin0 tss   as well as 

Hooke law for shear stress should be added to the system. 
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The values of material constants for RP-520, which were used 
for calculations, have been taken from [8]. The list of the 
values is given in Table 1. 
 

NUMERICAL RESULTS AND DISCUSSION 
 
The results of transient response simulation and effects of 
frequency and temperature on the complex moduli in the frame 
of modified technique described in Sec.3 are presented. 
Evolution of strain and inelastic strain for epoxy resin (PR-
520) under force harmonic loading in pure shear with strain 
amplitude MPas 450   are shown in Fig. 1 and Fig. 2 

respectively for frequency 1Hz at different temperatures. 
These figures show the inelastic behavior occurs earlier at 80 

C  while its behavior is elastic for 25 and 50 C .It‘s important 
to notice that all response of material are asymmetric.  
 
 
 
 
 
 
 
 
 

Fig. 3 illustrates the actual loop under cyclic loading in the 

MPas 450   at the frequency 1Hz for 25, 50, 80 C . As 

mentioned for Figure 2, this figure illustrates the actual loops 
are linearlyat 25 and 50 C while is as loopfor 80 C  and 
inelastic behavior occurs in this temperature. The material 
demonstrates cyclically stable response over the whole interval 

Table 1. The values of material constants for RP-520 
 

v α1
 

α0
 

q
 

n Z1   MPa Z0   MPa D0    1/sec E MPa Temp, oC 

0.4  0.122  0.571  253.6  0.92  768.6  407.5  106
 

3250  25 
0.4  0.085  0.316  226.1  0.94  616.4  267.9  106

 

2980  50 
0.4  0.064  0.087  273.4  0.88  564.9  195.4  106

 

2520  80 
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of loading amplitudes and frequencies investigated. Fig. 4 
illustrates the actual loop with strain amplitude MPas 700   

at the frequency 1Hz for 25 C . As it was mentioned earlier, 
this actual loop can be approximated with making use of 
modified equivalent linearization scheme.  
 

 
 

Fig. 1. Strain evolution under force harmonic loading 
 

 
 

Fig. 2. Inelastic strain evolution under force harmonic loading 
 

 
 

Fig. 3. Actual loops under cyclic loading 
 

In the same figure, the actual loop (line 1) is shown along with 
the loops calculated in the frame of modified (line 2) 
equivalent linearization techniques. The cyclic diagrams at 
stabilized stage of the vibration )( 0see aa   (i.e. concretization 

of general cyclic diagram ),( 0 see aNaN   used in the formulae 

(10)for N ) are shown in Fig. 5.  

 
 

Fig. 4. Hysteresis loops at the frequency 1Hz 
 

 
 

Fig. 5. Cyclic diagram for PR-520 at 1, 50, 100Hz 
 

The curves are calculated for cyclic pure shear for different 
frequencies (1, 50,100 Hz) at 25 C . Using the cyclic diagram 
and making use of the formulae 9 and 10, the imaginary and 
real parts of the complex compliance moduliand plasticity 
factor(the imaginary moduli J  and 

JN  , real moduli J   and 

JN ) in the frame of modified equivalent linearization scheme 

are determined.The improved values of J   and J   have been 
found according to the modified scheme for different 
frequencies at steady-state cyclic regime and constant 
temperature.Dependency of J  , and J  , on the amplitude of 

stress, 0s , and frequency for the PR-520 are shown in Fig.6 

for 1, 50, 100 Hz at 25 C . 
 

  
 

Fig. 6. The real and imaginary parts of complex compliance 
modulus at various frequencies 
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Fig. 7. Cyclic diagram for 1Hz at 25, 50,  80 
 

 
 

Fig. 8. The real and imaginary parts of complex compliance 
modulus at various temperatures 

 
This figure and cyclic diagram show the inelastic behavior 
occurs at higher stress amplitude with increase of frequency. 
The trend of real part of compliance modulus presented in Fig. 
6 show Its independence on frequency in the elastic region. 
With increase of frequency the real part of compliance drops 
later to zero after yield point. It show the strength of materials 
is increased. The loss modulus increase significantly after 
yield point while, its increasing values occurs at higher stress 
amplitude with increase of frequency. The cyclic diagrams at 
stabilized stage of the vibration at 1Hz for different 
temperatures are shown in Fig. 7. The effect of temperature on 
behavior of material is observed clearly. This figure show the 
inelastic behavior occurs at lower stress amplitude with 
increasing of temperature. According to the procedure 
mentioned above, dependency of complex compliance 

modulus, J and J  , on the amplitude of stress, 0s , and 

temperature are shown in Fig.8 for 25, 50, 80 C . As it is seen 
in this figure, the inelastic behavior occurs at lower stress 
amplitude with increasing of temperature. The trend of J   
modulus behavior presented in Fig. 8 show that its values 
increase slightly with increase of temperature while, the J   
increase significantly with increase of temperature after yield 
point. Within the interval of interest between 25 and 80 C , for 
higher values of stress intensity, the J   modulus increases 
significantly. 
 
 
 
 
 
 
 

Conclusions 
 
In this investigation, the problem of characterization of 
material response to harmonic loading is addressed. The 
approach that uses the complex-value amplitude relations is 
preferred rather than direct numerical integration of the 
complete set of constitutive equation for the viscoelastic 
material. In this paper, Goldberg model was used to simulate 
the time dependent response of PR-520 under force harmonic 
loading. Obtained histories of main field variables evolution 
were used to find the stress–strain cyclic diagram and real as 
well as imaginary parts of complex compliance modulus with 
making use of modified equivalent linearization techniques 
over wide range of frequency and amplitude. Results of 
calculations show evidently that, the strength of polymeric 
material (Epoxy PR520) increases with increase of frequency 
while, the strength of material decreases with increase of 
temperature. The sensitivity of cyclic diagrams to frequency 
variations at the low values is more profound than at the region 
of higher frequency. It’s important to notice that with the 
increase of strength of material the sensitivity to frequency is 
reduced. Therefore the behavior of saturation type is clearly 
exhibited. In general, it is possible to conclude that complex 
moduli demonstrate the weak dependence on the frequency 
and strong dependence on temperature within the interval 
investigated. 
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