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ARTICLE INFO                                       ABSTRACT 
 
 

In this paper we present a concrete method to estimate the moments of time of ruin, surplus 
immediately before the ruin and deficit at ruin under two way renewal process. Gerber–Shiu 
discounted penalty function are used to estimate the same. Laplace transform is taken into account 
while calculating the moment. Furthermore, Lindley distribution is being assumed as the 
distribution of the claim amount .This approach allows for the experimentation of various 
distribution forms among the eventual random variables. 
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INTRODUCTION  

 

The time of ruin, the surplus before ruin and the deficit at ruin etc. have captured tremendous attention of research personalities 
since its introduction to the literature. There have been remarkable works of the same under classical risk process and renewal risk 
theory as well. Gerber et al (1987) and Defunse and Gerber(1988) focused on densities of time of ruin ,surplus before ruin time, 
probability of ruin such that claim size distribution is exponential/combination of exponential or a combination of gamma 
distributions. Dickson et al. (1992), Willmort and Lin (1998) Schmidli (1997) discuss properties of the distribution of surplus 
before the time of ruin, the distribution of the deficit at the time of ruin and their relationship. Di Lorenzo and Tessitore (1996) 
propose a numerical approximation for calculation of the distribution of the surplus before the time of ruin. Debaen (1990) and 
Picard and Lefeure (1998, 1999) considered the moment properties of the time of ruin.  Later on Gerber and Shiu (1998) study the 
joint distribution of the time of the ruin, the surplus before and deficit at the time of ruin under discounted penalty function. 
Willmort and Lin (2000) proposed the method for finding moments of the time of ruin, deficit at ruin, surplus before the ruin using 
defective renewal equation. Derkic and Willmort (2003) obtained an explicit expression rather a closed form expression for 
moments. 
 

Yang Xing and Rang Wo (2006) contributed a method for calculating moments under Erlang (n) risk process. All the above said 
works have been for classical or renewal risk process. Recently many works have been carried out under two sided jumps risk 
process set up. Perry et al. (2002), Jacobson (2005), Xing et al.(2008), Zhang et al.(2010). Dong et al.(2013) contributed to the 
risk models with two sided jumps. The current paper aims at studying the moments of the time of the ruin, surplus before the ruin 
and deficit at the ruin under two sided jumps renewal process.to establish the moments we make use of the expected discounted 
penalty function put forwarded by Gerber and Shiu (1998). The study make use of the distribution of modified waiting time, 
Rebello and Thampi (working paper, 2016), for the calculation of moments. The number of claims following Poisson distribution, 
random gain following Erlang (2) and finally we assume that the claim time distribution is following a renewal distribution, 
Lindleydistribution, with parameter θ. 
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Model and Assumptions 
 
Following the idea of Dong and Liu (2013) we consider the surplus process as  
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Where 0u  ≥0,the initial surplus, p>0,the constant premium rate ,
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   Compound Poisson process with intensity λ 

representing the total random gain ( premium income or investment or annuity) until time t. Xi’
s are independent and identically 

distributed random variables with common density  f and mean μx. Here we assume that X follows an Erlangian (2, β) and Laplace 
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of claims up to time t with interclaim { Hi}.The Hi’
s are i.i.d random variables with common density g and Laplace transform  
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and the Laplace Transform,       
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Also we assume that { },{ },{ ( )}i jX Y M t   and {N (t)}   are mutually independent and ( ). ( )x yp E H     for ensuring a 

positive security loading condition. 
 

Let inf{ 0, R(t) 0}T t     be the ruin time, R (T_) be the surplus immediately before ruin and  

 

( )R T be the deficit at ruin, again we define the probability of ruin 
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Again, Let 
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  be the time when nth claim occurs,T0=0.Since ruin only occurs at the epochs where claims occur, then we 

define the discrete time process { , 0,1,2...}nR R n     and 0 0R 
 

 

Again  ( )nRn R T   denotes the surplus immediately after the nth claim. 
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     where the initial surplus u and the claim size Yi are exactly the same as those in model (1). 
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The counting number process ( )N t  denotes the number of claims up to time t with the modified interclaim times 1i i iZ T T   . 

Clearly Zi are i.i.d random variables with a common density k. 
 
Due to Rebello and Thampi (working paper, 2016) the modified waiting time distribution is given by 

31 2

1 2 3( ) a a a , 0R tR t R tk t e e e t     where 1 2 3 1 2 3, , , , &a a a R R R   are properly chosen constants. 

 

Derivation of moments 
 

We have 
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Gerber-Shiu Penalty function 
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time of ruin, the deficit at ruin and the surplus before ruin respectively. (.)I   is an indicator function and ( , )w x y   is a non-negative 

function of 1 20& 0.x x  We first derive an integro-differential equation for   .We consider a delayed renewal process, the 

elapsed time before the first claim = r and the inter occurrence times after the first claim is greater than r.If the first claim has 
occurred at time 0 and the ruin has not occurred, the risk model is an ordinary renewal process. 
Conditioning on the time and the amount of the first claim, we have, 
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Consider as  1 2( ) ......................(2)p u I I   . 
 

Differentiating with respect to u, 1I  becomes  

 

( ) ( )

1' [ '( ) ( ) ] ( , ) ( ) (0) ( , ) ( )
s u s u

p p

u s u

s u s u
I e k k e w s x s q x dxds k w u x u q x dx

p p p

  
     

        

( )

1 1' '( ) ( , ) ( ) (0) ( , ) ( )
s u

p

u s u

s u
I I e k w s x s q x dxds k w u x u q x dx

p p


   

      
 

 

Differentiating again with respect to u, 
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Similarly for 2I  , 
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Taking Laplace transform on both sides, 
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This paper is constructed to learn the insurance process under two sided jumps risk renewal process. We investigated a 
reformulated expression for Laplace transform of moments under two sided risk renewal process. The explicit expression for the 
same is being derived. The application of other feasible distributions to the claim amount may be considered as a scope of further 
study. 
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