

Full Length Research Article

DETERMINATION OF GREATEST COMMON DIVISOR IN 2 
 Z

*Sivaraman, R.

Associate Professor of Mathematics, D.G. Vaishnav College, Chennai – 600 106
National Awardee for Popularizing Mathematics Among Masses

ARTICLE INFO ABSTRACT

I had attempted to optimize the time needed to calculate the greatest common divisors in the

Euclidean domain 2 
 Z .

Copyright©2016, Sivaraman. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

The greatest common divisor henceforth mentioned as GCD of
two positive integers a and b is the largest integer that divides
both a and b. Finding the GCD of two integers is ubiquitous in
many important number-theoretical algorithms, including the
AKS primality test and the RSA encryption algorithm. I wish
to introduce some of the many fast solutions to this problem in
this paper.

Euclidean Algorithm

The Euclidean algorithm runs in O(n2) time, where n is the
maximum bitsize of the inputs. Given two integers a and b
with a<b, each step of the Euclidean algorithm replaces the
ordered pair (a; b) with a new pair (a;b1). The number b1is the
remainder upon division of b by a, or b1=b –qa where

b
q

a

 
   

and x   is the greatest integer less than or equal to x

also called floor function, since its value will round any
number x down to the nearest integer. Now, since q is an
integer, and gcd(a; b) divides both a and b, it divides both qa
and b. Since b1=b –qa it should divide b1.

*Corresponding author: Sivaraman, R.,
Associate Professor of Mathematics, D.G. Vaishnav College, Chennai – 600
106, National Awardee for Popularizing Mathematics Among Masses.

Therefore, we reduce the problem of finding the GCD of a and
b to finding the GCD of the pair (a;b1), where b1 is less than
both aas well as b. We now can divide a by b1and iterate the
process until the numbers become so small that the problem
becomes trivial, i.e. it reduces to the ordered pair (u; 0) for
some positive integer u. Then, sincegcd(u; 0) = u, the GCD is
u itself. We shall now see the following algorithm called
“Binary Algorithm”.

Binary Algorithm

The binary algorithm also runs in O(n2) time. Starting with our
initial inputs a and b, we consider each modulo 2. If a is odd
and b is even or vice versa, then we divide out by a factor of 2
since gcd(a; b) isequal to gcd(a; b/2) or gcd(a/2; b),
respectively. If both are even, we find gcd(a; b) = 2 gcd(a/2;
b/2), so we can replace (a; b) with (a/2; b/2) and store the
factor of 2 elsewhere.

If both are odd, then assuming b>a, we replace (a; b) with (a;
b–a). The algorithm terminates when either of the elements of
the pair is equal to 0, and the larger element is found to be the
GCD. Despite the similar theoretical runtime to the Euclidean
algorithm, the binary algorithm is about 15 percent faster in a
practical setting (Knuth) since division by 2 can be
implemented quickly by a binary right-shift.

ISSN: 2230-9926

International Journal of Development Research
Vol. 06, Issue, 11, pp.10046-10047, November, 2016

International Journal of

DEVELOPMENT RESEARCH

Article History:

Received 17th August, 2016
Received in revised form
21st September, 2016
Accepted 19th October, 2016
Published online 30th November, 2016

Available online at http://www.journalijdr.com

Key Words:

Greatest Common Divisor (GCD),
Euclidean Algorithm,
Euclidean Domain,
Binary Algorithms,
Sub Quadratic Algorithms.

Subquadratic Algorithms

The first example of a subquadratic GCD algorithm was due to
Schonhage (Moller, 2008) and ran in O(n(log n)2 log logn)
time. In general, these algorithms are prohibitively slow for
any inputs that are not tens of thousands of bits in length.

Extension to Euclidean Domains

The Euclidean algorithm for the integers makes use of the
property that, when dividing one integer by another, there is
always a `quotient' and a `remainder'. Euclidean domains are
integral domains that have similar properties. A Euclidean
domain is an integral domain R equipped with a function N
called a norm that maps elements of R to the natural numbers.
Given nonzero elements a and b inR, there exist elements q
and r such that a = bq + r, where r = 0 or N(r) < N(b). The
element q is called the quotient of a and b, while the element r
is called the remainder. Note that Z (the set of all integers) is a
Euclidean domain, with its norm mapping each integer to its

absolute value. That is, for any integer a, N(a) = a .

The concept of GCD can also be easily generalized to
commutative rings, of which Euclidean domains are a subset.
Given a commutative ring R and elements a and b in R, an
element g is the greatest common divisor of a and b if g
divides both a and b and any other element dividing both a and
b also divides g. It is important to note that in the general case,
a pair of elements can have more than one GCD. This is due to
the existence of units, elements of R that have multiplicative
inverses. If g is a GCD of elements a and b, and u is a unit,
then it is easy to verify that gu is also a GCD of a and b.
Therefore, our algorithms only attempt to find the GCD that is
unique up to multiplication by units.

Description of Algorithms

I prescribe three approaches for calculating the GCD of
elements in the integer ring 2 

 Z . 3.1 Euclidean Like

Algorithm.

The ring 2 
 Z is the set of all numbers of the form 2x y ,

where x and y are integers. The first approach is using the
Euclidean algorithm. The ring 2 

 Z is a Euclidean domain

with norm   2 22 2N x y x y   . The algorithm is essentially

identical to the integer Euclidean algorithm.

Binary Like Algorithm

The second approach is division by 2 2 . This works
similarly to the binary algorithm for integers. We begin with
our two elements a and b in 2 

 Z . There are four possible

cases: both are divisible by 2 2 ; a is divisible by 2 2

, but b is not; b is divisible by 2 2 , but a is not and neither

are divisible by 2 2 .

In the first case, we can divide both by 2 2 , since gcd(a; b)

=  2 2 gcd ,
2 2 2 2

a b 
 
  

In the second and third cases, we can divide the respective
element by 2 2 and the GCD remains the same. In the final
case, we replace the element with larger norm with the
difference of the two elements. The process is re-iterated until
one of the elements is zero, and the nonzero element is the
GCD.

Approximate Division Algorithm

The slowest step of the Euclidean algorithm is determining the
quotient of the two elements, which requires division and
multiplication of large numbers. However, an approximate
quotient can be obtained by replacing the original elements
with much smaller numbers and performing the
multiplication/divisions steps with these replacements. This is
done by bit shifting the elements to the right by a fixed
amount. An approximate division algorithm that reported
significant improvements over other algorithms for finding the
GCD of Gaussian integers was published in 2002 (Collins,

2002). Our algorithm for 2 
 Z calculates the approximate

quotient q of elements a and b by bit shifting each of the
components of a and b by about half their bit size. Upon
performing this, I got some interesting results which are
summarized below.

RESULTS

I assessed the performance of each algorithm with the Python
time library. I took the average runtime (in seconds) of the
algorithm over 100 trials with randomly generated inputs of
bitsize less than a fixed ceiling k. The results are tabulated
below for k equal to 100, 200, 300, 400, and 500.

k Euclidean Binary Approximate Division

100 1.45 2.70 1.46
200 2.88 5.37 2.90
300 4.36 8.62 4.78
400 6.48 12.57 6.64
500 8.21 15.96 8.65

In their present implementations, the Euclidean algorithm is
the fastest, but itis closely followed by the approximation
division algorithm introduced in this paper.

REFERENCES

Moller, N. 2008. On Schonhage's Algorithm andSubquadratic

Integer GCD Computation, Mathematics of Computation
Vol. 77, No. 261 (Jan.,)pp. 589-607.

Knuth, D. Semi-numerical Algorithms, The Art of Computer
Programming 2 (3rd edition), Addison-Wesley, ISBN 0-
201-89684-2

Collins, G.E. 2002. A Fast Euclidean Algorithm for Gaussian
Integers, J. Symbolic Computation, 33, 385392,
doi:10.1006/jsco.2001.0518.

 10047 Sivaraman, Determination of greatest common divisor in 2 
 Z

