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I had attempted to optimize the time needed to calculate the greatest common divisors in the 

Euclidean domain 2 
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INTRODUCTION 
 
The greatest common divisor henceforth mentioned as GCD of 
two positive integers a and b is the largest integer that divides 
both a and b. Finding the GCD of two integers is ubiquitous in 
many important number-theoretical algorithms, including the 
AKS primality test and the RSA encryption algorithm. I wish 
to introduce some of the many fast solutions to this problem in 
this paper. 
 

Euclidean Algorithm 
 
The Euclidean algorithm runs in O(n2) time, where n is the 
maximum bitsize of the inputs. Given two integers a and b 
with a<b, each step of the Euclidean algorithm replaces the 
ordered pair (a; b) with a new pair (a;b1). The number b1is the 
remainder upon division of b by a, or b1=b –qa where 

b
q

a

 
   

and x   is the greatest integer less than or equal to x 

also called floor function, since its value will round any 
number x down to the nearest integer. Now, since q is an 
integer, and gcd(a; b) divides both a and b, it divides both qa 
and b. Since b1=b –qa it should divide b1.  
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Therefore, we reduce the problem of finding the GCD of a and 
b to finding the GCD of the pair (a;b1), where b1 is less than 
both aas well as b. We now can divide a by b1and iterate the 
process until the numbers become so small that the problem 
becomes trivial, i.e. it reduces to the ordered pair (u; 0) for 
some positive integer u. Then, sincegcd(u; 0) = u, the GCD is 
u itself. We shall now see the following algorithm called 
“Binary Algorithm”.  
 
Binary Algorithm 
 
The binary algorithm also runs in O(n2) time. Starting with our 
initial inputs a and b, we consider each modulo 2. If a is odd 
and b is even or vice versa, then we divide out by a factor of 2 
since gcd(a; b) isequal to gcd(a; b/2) or gcd(a/2; b), 
respectively. If both are even, we find gcd(a; b) = 2 gcd(a/2; 
b/2), so we can replace (a; b) with (a/2; b/2) and store the 
factor of 2 elsewhere.  
 
If both are odd, then assuming b>a, we replace (a; b) with (a; 
b–a). The algorithm terminates when either of the elements of 
the pair is equal to 0, and the larger element is found to be the 
GCD. Despite the similar theoretical runtime to the Euclidean 
algorithm, the binary algorithm is about 15 percent faster in a 
practical setting (Knuth) since division by 2 can be 
implemented quickly by a binary right-shift. 
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Subquadratic Algorithms 
 
The first example of a subquadratic GCD algorithm was due to 
Schonhage (Moller, 2008) and ran in O(n(log n)2 log logn) 
time. In general, these algorithms are prohibitively slow for 
any inputs that are not tens of thousands of bits in length. 
 
Extension to Euclidean Domains 
 
The Euclidean algorithm for the integers makes use of the 
property that, when dividing one integer by another, there is 
always a `quotient' and a `remainder'. Euclidean domains are 
integral domains that have similar properties. A Euclidean 
domain is an integral domain R equipped with a function N 
called a norm that maps elements of R to the natural numbers. 
Given nonzero elements a and b inR, there exist elements q 
and r such that a = bq + r, where r = 0 or N(r) < N(b). The 
element q is called the quotient of a and b, while the element r 
is called the remainder. Note that Z (the set of all integers) is a 
Euclidean domain, with its norm mapping each integer to its 

absolute value. That is, for any integer a, N(a) = a .   

 
The concept of GCD can also be easily generalized to 
commutative rings, of which Euclidean domains are a subset. 
Given a commutative ring R and elements a and b in R, an 
element g is the greatest common divisor of a and b if g 
divides both a and b and any other element dividing both a and 
b also divides g. It is important to note that in the general case, 
a pair of elements can have more than one GCD. This is due to 
the existence of units, elements of R that have multiplicative 
inverses. If g is a GCD of elements a and b, and u is a unit, 
then it is easy to verify that gu is also a GCD of a and b. 
Therefore, our algorithms only attempt to find the GCD that is 
unique up to multiplication by units. 
 
Description of Algorithms 
 
I prescribe three approaches for calculating the GCD of 
elements in the integer ring 2 

 Z . 3.1 Euclidean Like 

Algorithm. 
 

The ring 2 
 Z is the set of all numbers of the form 2x y , 

where x and y are integers. The first approach is using the 
Euclidean algorithm. The ring 2 

 Z is a Euclidean domain 

with norm   2 22 2N x y x y   . The algorithm is essentially 

identical to the integer Euclidean algorithm. 
 
Binary Like Algorithm 
 

The second approach is division by 2 2 . This works 
similarly to the binary algorithm for integers. We begin with 
our two elements a and b in 2 

 Z . There are four possible 

cases: both are divisible by 2 2 ; a is divisible by 2 2

, but b is not; b is divisible by 2 2 , but a is not and neither 

are divisible by 2 2 .  
 
 

In the first case, we can divide both by 2 2 , since gcd(a; b) 

=  2 2 gcd ,
2 2 2 2

a b 
 
    

 

In the second and third cases, we can divide the respective 
element by 2 2 and the GCD remains the same. In the final 
case, we replace the element with larger norm with the 
difference of the two elements. The process is re-iterated until 
one of the elements is zero, and the nonzero element is the 
GCD. 
 
Approximate Division Algorithm 
 
The slowest step of the Euclidean algorithm is determining the 
quotient of the two elements, which requires division and 
multiplication of large numbers. However, an approximate 
quotient can be obtained by replacing the original elements 
with much smaller numbers and performing the 
multiplication/divisions steps with these replacements. This is 
done by bit shifting the elements to the right by a fixed 
amount. An approximate division algorithm that reported 
significant improvements over other algorithms for finding the 
GCD of Gaussian integers was published in 2002 (Collins, 

2002). Our algorithm for 2 
 Z calculates the approximate 

quotient q of elements a and b by bit shifting each of the 
components of a and b by about half their bit size. Upon 
performing this, I got some interesting results which are 
summarized below.  
 

RESULTS 
 
I assessed the performance of each algorithm with the Python 
time library. I took the average runtime (in seconds) of the 
algorithm over 100 trials with randomly generated inputs of 
bitsize less than a fixed ceiling k. The results are tabulated 
below for k equal to 100, 200, 300, 400, and 500. 
 

k Euclidean Binary Approximate Division 

100 1.45 2.70 1.46 
200 2.88 5.37 2.90 
300 4.36 8.62 4.78 
400 6.48 12.57 6.64 
500 8.21 15.96 8.65 

 
In their present implementations, the Euclidean algorithm is 
the fastest, but itis closely followed by the approximation 
division algorithm introduced in this paper. 
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