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ARTICLE INFO                                       ABSTRACT 
 
 

In this paper we introduce the notion of Left Regular- bi-near subtraction semigroup. Also we 
give characterizations of Left Regular- bi-near subtraction semigroup. 
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INTRODUCTION 
 
In [3,4], Y. V. Reddy and C. V. L. N. Murty, has introduced, 
On Strongly Regular Near Rings A near subtraction semigroup 
X is regular if for all xX, there exists aX with x= xax.  A 
near subtraction semigroup X is left strongly regular if for all 
xX, there exists aX with x=ax2.   A near subtraction 
semigroup X is right strongly regular if for all xX, there 
exists aX with x=x2a.   Motivated by these concepts we 
introduce left regular bi near subtraction We obtain some 
characterisation of Left Regular bi near subtraction semigroup 
 
Preliminaries  
 

A non-empty subset X together with two binary operations ““   
and “.” is said to be subtraction semigroup If (i) (X,) is a 
subtraction algebra (ii) (X, .) is a semi group (iii) x(yz)=xy 
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xz  and (xy)z= xzyz  for every x, y, zX. A non-empty 
subset X together with two binary operations ““ and  “.” is 
said to be near subtraction semigroup if (i) (X,) is a 
subtraction algebra (ii) (X,.) is a semi group and (iii) (xy)z= 
xzyz   for every x, y, zX.  A non-empty subset X is said to 
be S1-near subtraction semigroup if for every aX there exists 
xX* such that axa=xa. A non-empty subset X is said to be S2-
near subtraction semigroup if for every aX there exists xX* 
such that axa=ax. A non-empty subset X is said to be nil-near 
subtraction semigroup if there exists a positive integer k 1 
such that ak=0 Which implies that xa=0 where x=ak-1. 
                                
In this section, We establish   new concept of left regular bi 
near subtraction semigroup and some properties of left regular 
bi near subtraction semigroup 
 
Definition 3.1.1                    
 
A near subtraction semigroup X is regular if for all xX, there 
exists aX with x= xax   
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Definition 3.1.2                  
 
A near subtraction semigroup X is left strongly regular if for 
all xX, there exists aX with x=ax2 

 

Definition 3.1.3                    
 
A near subtraction semigroup X is left regular bi near 
subtraction semigroup. if X is both regular and left strongly 
regular near subtraction semigroup. 
 
Example 3.1.4 
 
Let X={0,a,b,1} in which “-“  and  “.” be defined by 
 

- 0 a b 1   . 0 a b 1 
0 0 0 0 0 0 0 0 0 0 
a a 0 a 0 a 0 a b 1 
b b b 0 0 b 0 b b a 
1 1 b a 0 1 0 1 a 1 

 

Then X is a left regular bi near subtraction semigroup 
 

Definition 3.1.5  
 

A near subtraction semigroup X is right strongly regular if for 
all xX, there exists aX with x=x2a. 
 

Definition 3.1.6                  
 
A near subtraction semigroup X is right regular bi near 
subtraction semigroups. if X is both regular and right  strongly 
regular near subtraction semigroup. 
 
Example 3.1.7 
 
Let X={0,a,b,c} in which “-“  and  “.” be defined by 
 

- 0 a b c   . 0 1 2 3 
0 0 0 0 0 0 0 0 0 0 
a a 0 a 0 a a a a a 
b b b 0 0 b b b b b 
c c b a 0 c c c c c 

 

Then X is a right regular bi near subtraction semigroup 
 

Definition 3.1.8      
 

A near subtraction semigroup X is said to be reduced if it has 
no nilpotent elements 
 

Definition 3.1.9                
 

A near subtraction semigroup X is said to be IFP if 
ab=0axb=0 for allxX. 
 

Lemma 3.1.10 
 

(a) if X is left(right)strongly regular, it is reduced. 
(b)  In zero-symmetric reduced near subtraction semigroup, 

ab=0  ba=0, and IFP holds. 
 

Proof: (a) The right strongly regular case is trivial. If x2=0 and 
x=ax2=a0 then 0=x2 =(a.0)x= a(0x)=a0=x. (b) The proof is 
obvious. 
 
 
 
 
 

Lemma 3.1.11 
 

A left regular bi near subtraction semigroup with IFP is right 
regular bi near subtraction semigroup 
 
Proof: 
 
If x=ax2=xax, then (ax-xa)x=0so by IFP (ax-xa)ax=0 and 
similarly we have (xa-ax)ax=0. Therefore axax=xa2x. Thus 
ax=axax=xa2x so x=xax=x2a2x. (ie.,) x=x2b where b= a2x. 
Moreover xbx=x a2x.x=xax =x. 
 

Example 3.1.12  
 

Converse of the above Lemma need not be true 
 

Let X={0,1,2,3} in which “-“  and  “.” be defined by 
 

- 0 1 2 3   . 0 1 2 3 
0 0 0 0 0 0 0 0 0 0 
1 1 0 1 0 1 1 1 1 1 
2 2 2 0 0 2 2 2 2 2 
3 3 2 1 0 3 3 3 3 3 

 

This X is a right regular bi near subtraction  semigroup but not 
a left regular bi near subtraction semigroup [Since a≠ba2, 
a≠ca2] 

 

Proposition 3.1.13 
 

If x is zero symmetric, left regular is equivalent to left strong 
regular and these imply right regular. Moreover if X is unital, 
all three conditions are equivalent. 
 

Proof: 
 

If X is left strongly regular, then for all xX there exists a X 
such that x=ax2. It demands that (x-xax)x=x2-xax2= x2- x2=0. 
So by lemma 3.1.10, Also, x(xax-x)=0 Then (x-xax)2=x(x-
xax)-xax(x-xax)=0. x-xax=0{Since X is reduced]. Similarly 
we can prove xax-x=0. Therefore x=xax. Thus X is left 
regular. Then X is right regular [by the lemmas3.1.10 and 
3.1.11]. if X is unital and x=x2a=xax, then xa and ax are 
idempotents. Now, x = xax =x(ax)=(ax)a =ax2. Thus X is a  
Strongly regular. X is left regular. 
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