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ARTICLE INFO                                      ABSTRACT 
 
 

The present work was focused on analyzing the aerosol optical properties over Rohtak during 
winter season from December 2015 to February 2016 using sky-radiometer data. The results 
reveal that AOD shows strong spectral dependence. Higher value of AOD was observed during 
January at all wavelengths. The monthly mean AOD at 500 nm were found to be 0.44±0.23, 
0.80±0.37 and 0.57±0.34 for December, January and February, respectively with seasonal 
average of 0.63±0.36. Higher values of Alpha predominantly ranged from 0.8-1.4 indicates the 
relative dominance of fine mode particles to the aerosol loading over the station. Volume size 
distribution exhibits bimodal distribution with dominant fine mode around 0.17 µm and coarse 
mode around 11 µm. The derived aerosol optical properties are used in SBDART model for 
aerosol radiative forcing estimation. Monthly mean atmospheric radiative forcing values are +7, 
+14 and +12 Wm2 for December, January and February respectively. 
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INTRODUCTION 
 
Along with the green house gases, atmospheric aerosols also 
affect the radiative balance of the earth-atmosphere system at 
local, regional and global scale, therefore acts as the main 
source of uncertainty in assessing the anthropogenic climate 
perturbation (IPCC 2007, 2013).  The crucial factors in this 
uncertainty are the highly heterogeneous properties of aerosols 
over spatial and temporal scale due to type of aerosol sources, 
their chemical composition, prevailing meteorological 
conditions and transport of aerosols (Ram et al., 2010; 2012; 
2015). Therefore a global network of campaign is required for 
estimating the aerosol optical and microphysical properties 
and their effects on weather and climate (Meloni et al., 2005; 
Moorthy et al., 2009). Indo-Gangetic plain (IGP) is one of the 
densely populated and heavily polluted region in India (Prasad 
et al., 2005) with more than 50% population of the country 
(Gautam et al., 2011, Tiwari et al., 2015a). Several studies 
have been carried out for analyzing aerosols properties and 
estimation of aerosol radiative forcing at different sites of IGP 
(Tiwari et al., 2016; Patel and Kumar, 2015; Srivastava et al., 
2012; Ram et al., 2016). 
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This region exhibits strong seasonal variation in aerosol 
particles size and their concentration (Tiwari et al., 2016a; 
Tiwari et al., 2016, Sharma et al., 2014; Lodhi et al., 2013). 
This region suffers from severe haze, fog and smog problems 
due to the large population growth and increasing urbanization 
(Gautam et al., 2007). During winter season prevailing 
meteorological conditions with shallow boundary layer and 
minimum rainfall also helps in the fog formation over this 
region (Kaufman et al., 2002). Over IGP large scale biomass 
burning takes place during winter months, which emits large 
concentration of black carbon (BC) and other aerosols 
(Kanawade et al., 2014). During winters high aerosol load 
from biomass burning also favors the formation of early 
morning fog, which turns into production of smog and causes 
severe reduction in visibility that leads to many problems like 
road accidents, health problems, delay in air traffic, etc. In the 
present study, we have analysed the aerosols optical properties 
like aerosol optical depth (AOD), angstrom exponent (α), 
single scattering albedo (SSA), asymmetry parameter etc. and 
their radiative effects during the winter months. This study 
was focused on the estimation of aerosol radiative forcing, 
forcing efficiency and heating rate over Rohtak, an urban site 
in western part of IGP by using the sun/skyradiometer 
observational data from a period of December-2015 to 
February-2016.  
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Measurement site, Instrument and Methodology 
 
The experimental site Rohtak is located in the North-Western 
part of India (Lat 28.89°N, Long 76.58°E, 214m AMSL) 
70 km northwest of  Delhi. Like most Indian cities, Rohtak has 
also a mixed pattern of land use with a population of 0.37 
million. The instrument used for aerosol measurements during 
this study is a Prede POM-02  Sun/sky radiometer located on 
the roof top of three story building of Maharishi Dayanand 
University. The instrument can make measurements of both 
direct and diffuse sky radiances at predefined scattering angles 
at regular intervals within the spectral range of 340-2200nm. 
The precision of the in situmethod has been estimated to be in 
between 1-2.5% depending on the wavelength (Campanelli et 
al., 2004). In this study, the 7 wavelengths data 340, 380, 400, 
500, 675, 870, 1020 nm has been used to retrieve aerosol 
optical properties. The SKYRAD.pack software (Nakajima et 
al., 1996) version 4.2 is used to process the radiance 
measurements to retrieve the aerosol optical depth, angstrom 
exponent, single scattering albedo, refractive index and 
asymmetry parameters. In the present study data from 
December 2015 to February 2016 is used to retrieveaerosol 
optical properties over Rohtak. In situ calibration constant can 
be estimeted using the improved Langley plot technique 
(Campanelli et al., 2004). 
 
Aerosol radiative forcing was estimated using Santa Barbara 
DISORT Atomspheric Radiative Transfer (SBDART) model, 
which has been developed by the atmospheric community 
(Ricchiazzi et al., 1998). The main input data for the model 
consists of the solar zenith angle or a particular date, time, 
latitude and longitude to calculate the solar zenith angle; the 
spectrum range of fluxes; atmospheric profile; the 
concentration of trace gases (CO2, CH4 and N2O); surface 
albedo; aerosols parameters (AOD, SSA and ASY). Based on 
the weather conditions tropical model profile of atmospheric 
parameters (e.g. temperature, pressure, ozone etc.) was used in 
SBDART to derive the net flux in the spectral range of 0.3-
4µm at the surface, at top of the atmosphere and in the 
atmosphere. Diurnal average aerosol DRF was estimated by 
computing the difference between the net radiative fluxes 
(downward-upward) with aerosols and without aerosols. 
Uncertainity in the estimation of radiative forcing due to 
deviation in simulation was found to be in the range of 10-
15% (Ricchiazzi et al., 1998). The difference between the 
surface and TOA forcing gives the net atmospheric forcing. 
Aerosol optical and physical properties have a significant 
effect on aerosol radiative forcing which can influence the 
radiative balance over the region. 
 

RESULTS AND DISCUSSION 
 

AOD and Angstrom exponent 
 
AOD is one of the crucial parameters to understand the aerosol 
loading in the atmosphere. Spectral variation of monthly 
average AOD shown in Figure 1 for winter season (December, 
January and February). Monthly variation in spectral pattern of 
AOD was observed during all months, with highest value of 
AOD in January and lowest value during December at all 
wavelengths as expected from the Mie theory. The similar 
trend of decreasing AOD with increasing wavelength was also 

observed by Mishra et al. (2013) and Balarabe et al. (2016). 
This indicates that dominant aerosol during this season are 
more influential scattered at shorter wavelength range as 
compared to longer wavelength range (Nwafor et al., 2007). 
From this it is also evident that AOD shows relatively strong 
spectral dependence at shorter wavelength with steeper slope 
as compared to the longer wavelength with gentle slope.  
Srivastava et al. (2012) also observed the similar pattern over 
Delhi. 
 

 
 

Fig. 1. Monthly spectral variation of AOD 
 

 
 

Fig. 2. Scatter plot of Alpha as a function of AOD500 

 

The monthly mean AOD at 500 nm were found to be 
0.44±0.23, 0.80±0.37 and 0.57±0.34 for December, January 
and February, respectively with seasonal average of 0.63±0.36. 
The seasonal mean AOD at 500 nm is comparable to that 
observed by Singh et al. (2004) and Kaskautis et al. (2012) 
over Kanpur while it is much lower than that observed over 
Delhi (Lodhi et al., 2013). The AOD during this season was 
mainly associated with fine mode aerosol particles produced 
from fossil fuel and biomass burning activities (Dey and 
Tripathi, 2008). Alpha represents the particle size distribution 
of aerosols while the AOD represents the aerosol loading in 
the atmosphere therefore AOD-Alpha scatter plot gives 
qualitative indication about the aerosol load due to different 
size particles. Figure 2 shows AOD-Alpha scatter plot for 
study period. From this it is clearly evident that predominantly 
alpha ranged from 0.8-1.4 which indicates the relatively more 
contribution of fine mode particles to the aerosol loading over 
the station during winter time. Lower boundary layer also 
contributes to higher AOD over station during winter 
(Kaskoutis et al., 2009). Figure 3a and 3b shows the frequency 
distribution of AOD (500 nm) and Alpha for entire study 
period. For both AOD (500 nm) and Alpha frequency 
distribution is mono-modal with modal value of 0.6 and 1.2, 
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respectively. Frequency distribution of AOD (500 nm) shows 
that ~60% of AOD varied between 0.0-0.6 and only ~20% 
AOD was found higher than 1.0. Approximately 80% of the 
Alpha values varied in the range of 1.0-1.5 which clearly 
indicates the dominance of fine mode aerosol associated with 
anthropogenic activities (Venkataraman et al., 2005; 
Pandithurai et al., 2007).  
 

 
 

(a) 
 

 
 

(b) 
 

Fig. 3. Frequency distribution of AOD500  (a) and Alpha (b) 
 

Single scattering albedo (SSA) 
 
SSA is the common and fundamental parameter for measuring 
the relative contribution of absorption to extinction and it 
plays crucial role in assessing the climatic effects of aerosols 
(Dubovik et al., 2002). It varies from 0 to 1 depending on the 
ratio of absorbing to scattering type aerosols. When the 
extinction is caused only by absorption than it is 0 whereas if 
the extinction is caused only by scattering than it is 1. Monthly 
spectral variability of SSA depicted in Figure 4. It clearly 
shows increasing trend with increasing wavelength except a 
slight decrease at 1020 nm with higher value during 
December. Lower SSA at shorter wavelength indicates the 
dominance of absorbing type fine mode aerosols. SSA does 
not show significant monthly variation during different entire 
study period. The average SSA at 500 nm for this season was 
0.94 which is much higher than the SSA observed over Delhi 
for winter 2004 by Ganguly et al. (2006). Lower SSA values 
over Rohtak as compared to Delhi indicates the less pollution.  
 
Variation in volume size distribution 
 
Aerosol volume size distribution is a crucial parameter for 
understanding the climatic effects of aerosol. 

 
 

Fig. 4. Monthly variation in spectral distribution of SSA 
        

 
 

Fig. 5. Monthly variability in volume size distribution 
 

Generally the aerosol exhibits bimodal size distribution 
worldwide, with fine mode <0.6 µm and coarse mode with 
>0.6 µm particles size (Dubovik et al., 2002). The aerosol 
volume size distribution was retrieved from the skyradiometer 
using 20 radius size bins in the range of 0.01 to 16.54 µm. 
Monthly variation in aerosol size distribution was illustrated in 
the Figure 5. From figure it is evident that size distribution 
exhibits bimodal distribution with dominant accumulation/fine 
mode around 0.17 µm and coarse mode is dominant around 11 
µm. Generally the low volume of fine mode aerosol was found 
as compared to coarse mode aerosol during all seasons but 
during winter there is not much difference between fine mode 
and coarse mode volume. The high volume of accumulation 
mode aerosols is attributed with the hygroscopic growth of 
particles (Alam et al., 2010; Tripathi et al., 2005; Singh et al., 
2004). Similar results of higher fine mode aerosol during 
winter was observed by Alam et al. (2012) over Karachi. 
Higher volume of fine mode aerosol was found during January 
than February and March. January is the coldest month of 
winter over northern India, therefore higher biomass and fuel 
burning for heating purposes contributes to the higher volume 
of fine mode aerosol. 
 
Radiative forcing and heating rates 
 
Average aerosol radiative forcing (ARF) at top of the 
atmosphere and at the surface is estimated by computing the 
difference between net solar flux (down-up) with and without 
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aerosols (Singh et al., 2005). The difference between the 
radiative forcing at TOA and at the surface gives the 
atmospheric radiative forcing. SBDART compute plane 
parallel radiative transfer in clear and cloudy conditions which 
is widely used for the radiative transfer calculations. For 
December, January and February average TOA, at the surface 
and the atmospheric forcing was illustrated in Figure 6. The 
estimated monthly average ARF at the surface is -20, -34 and -
27 Wm2 for December, January and February, respectively. 
TOA forcing for December, January and February is -13, -20 -
16 Wm2, respectively. Both TOA and surface forcing have 
negative sign for all three months. The atmospheric forcing 
values are +7, +14 and +12 Wm2 for December, January and 
February respectively. Relatively higher value of ARF is 
observed for January.  
 

 
 

Fig. 6. Monthly variation in aerosol radiative forcing 
 

Another important aspect is atmospheric heating rate due to 
aerosol radiative forcing, which can be calculated by following 
Liou (2002) as 

 

 
 

where ∂T/∂t is the heating rate (K day 1), g is the acceleration 
due to gravity, Cp the specific heat capacity of the air, ΔF is 
the atmospheric ARF  and ΔP is  the atmospheric pressure 
difference between the surface and 3 km (300 hPa). The 
monthly mean atmospheric heating rate for December, January 
and February is 0.18, 0.37 and 0.33 K day 1, respectively 
which exhibits a similar pattern as atmospheric radiative 
forcing. This indicates the dependence of atmospheric heating 
rate on the chemical characteristics and concentration of 
aerosols during different months. Higher heating rate during 
January attributed to the higher black carbon concentration due 
to biomass burning and anthropogenic activities. 
 

Conclusions 
 
The present study analyzed aerosol optical and radiative 
properties over Rohtak during winter season. Aerosols optical 
and physical properties shows significant monthly variability. 
AOD exhibits strong spectral dependence with decreasing 
trends from 340 nm to 1020 nm during all three months. 
Higher value of AOD was observed during January at all 
wavelengths indicates the higher aerosol loading associated 
with anthropogenic activities. The monthly mean AODs at 500 
nm were 0.44±0.23, 0.80±0.37 and 0.57±0.34 for December, 

January and February, respectively. Higher values of Alpha 
around 80% ranged between 1.0-1.5 which clearly indicates 
the dominance of fine mode aerosol. Volume size distribution 
exhibits bimodal distribution with fine mode around 0.17 µm 
and coarse mode around 11 µm. The monthly mean 
atmospheric forcing values are +7, +14 and +12 Wm2 for 
December, January and February, respectively. Similar pattern 
of mean atmospheric heating rate was observed with values of 
0.18, 0.37 and 0.33 K day 1 during December, January and 
February, respectively. 
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