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INTRODUCTION

Multilevel encryption is a process of encrypting the information which is encrypted one or more than once. Fibonacci Lucas
numbers and Fibonacci Lucas matrices play a vital role in cryptography. We construct cryptosystem Fibonacci Lucas
transformation. Fibonacci Lucas matrices are used as trapdoor function in public key cryptosystem.

Fibonacci Numbers

The Fibonacci sequence is 1, 1,2, 3,5, 8. .. Where each entry is formed by adding the two previous ones, starting with 1 and 1 as
the first two terms. This sequence is called Fibonacci sequence.

Properties of Fibonacci numbers

Fibonacci numbers are given by the following recurrence relation F |

=F +F,_, with the initial conditions f; =F, =1
Lucas Number

The Lucas number is defined to be the sum of its two immediate previous terms, thereby forming a Fibonacci integer sequence.
The first two Lucas numbers are Ly =2 and L, = 1 as opposed to the first two Fibonacci numbers F, = 0 and F; = 1. Though
closely related in definition, Lucas and Fibonacci numbers exhibit distinct properties. The Lucas numbers may thus be defined as
follows:
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2 ifn=0
L =<1 ifn=1
Ln—l +Ln—2 l.fn >1

The sequence of Lucas numbers is: 2,1,3,4,7,11,18,29,47,76,123,189.....

Pell Numbers

The Pell numbers are defined by the recurrence relation

0 ifn=0
P =41 ifn=1
2P +P _, otherwise

In words, the sequence of Pell numbers starts with 0 and 1, and then each Pell number is the sum of twice the previous Pell
number and the Pell number before that. The first few terms of the sequence are 0,1,2,5,12,29,70,169, 408,985, 2378, 5741,
13890,...

Fibonacci-Lucas Transform
The Fibonacci-Lucas Transformation can be defined the mapping FL:T> — T? such that [X.ji [F, F,ﬂj[xj (mod V) Where x, y
y' B L L, )\y

€{0,1,2,..N-1}, F; is the i term of Fibonacci series and L;is the i term of Lucas series. Denoting [F, F,Alj. Continue in this
Lr LHI

way we can form an infinitely many transformations.

Affine Cipher

An affine enciphering transformationis C = gP + b(mod N ) where the pair (a, b) is the encrypting key and gcd (a,N)=1. If y = E(x)
= (ax+b) mod 26, [1] then we can “solve for x in terms of y” and so E'(y)that is, if y= (ax + b) mod 26 then

y—b=ax(mod26) or equivalently ax = (y—b) mod26
Vignere ciphere

The Vigenere cipher was generated by Giovan Batista Belaso in 1553[1]. This cipher uses a secret keyword to encrypt the
plaintext. First, each letter in the plaintext is converted into a number. Then this numerical value for each letter of the plaintext is
added to the numerical value of each letter of a secret keyword to get the ciphertext. The Vigenere ciphers are more powerful than
substitution ciphers.

Proposed Work

An Algorithm for triple encryption using offs Fibonacci-Lucas transformation as the first layer of encryption, decrypting with the
inverse of the Affine transformation as the second layer of encryption and finally encrypting with the Fibonacci- Lucas
transformation as the third layer of encryption.

Encryption algorithm

Step-1: Alice creates plaintexts P =p; p2, p3 .. Pm
Step-2: Alice computes C,;=Px(FL)and get 1* ciphertext
Step-3: Alice decrypts the super encrypted message by using £~! ( y) =a’! ( y— b) mod 26 (=C,)

Step-4: Alice computes C,x(FL)=C;

Step-5: Alice sends message C; to Bob.
Decryption algorithm:

Step-1: Bob receives the encrypted message Cs.
Step-2: Bob compute C; x (FL)'=P,
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Step-3: Now Bob compute P; decrypted with the Affine transformation E(x) = (ax+b) mod 26, Ged(a,N)=1 and for a and b are
secrete, from the first level encryption message.

Step-4: Bob computes P=P;x (FL)fl to get the original plaintext message P.

A |B |C|DJ|E |F G |H |1 J K | L M
0 1 2 3 4 5 6 7 8 9 10 | 11 | 12
NJ]J]O [P |Q|R|S |T|U |V | W |X|Y |Z
13|14 (15 (16 [ 17 | 18 [ 19 120 |21 | 22 |23 |24 |25

VIGENERE CIPHER

Case-1: Fori=1 we get gy (51 £) =11
L L 21

Encryption algorithm

) 19 4
Step-1: Let the Plain text P= (T £\=
X T 23 19

Step-2: Alice computes C;= Px(FL)

19 4 11 27 23
X =
23 19) \2 1 61 42

27 23 61 42
Mod 26 1 23 9 16

Clz(l 23j
9 16

Step-3: Alice Compute Inverse of Affine transformation £~ (y) =a’ (y - b) mod 26 fora=5&b=16

y 1 23 9 16
y-16 -15 7 7 0
21(y-16) 315 | 147 | -147 |0
21(y-16) mod 26 | 23 17 9 0

Cy=(23 17
9 0

Step-4: Alice computes C,x(FL)=Cs
23 17 11 57 40

X =
9 0 2 1 9 9

Step-4: Encrypted message C; is FOJJ

57 40 9 9

Mod 26 5 14 9 9

Decryption algorithm
Step-1: First Decrypted Message is FOJJ

Step-2: Bob compute C; x (FL)'=P,

b MGG

23 -9 9 0

Mod 26 23 17 9 0
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p,— (23 17)
9 0

Step-3: Now applying affine transformation E(x)=(ax+b) mod 26 fora=5 & b= 16

X 23 17 9 0
5x+16 131 101 61 16
(5x+16)mod26 1 23 9 16
Decrypted message is B X J

1 23
P] =
9 16

Step-4: Bob Compute P, x(FL)"' to get original message P

1 23 -1 1 45 22
now X =
9 16 2 -1 23 -7

45 | 22 23 | 7
Mod 26 19 [ 4 23 19
Second Decrypted message is T E X T
. F F)_(12
Case-2: For i=2we get FL = =
L L) 3

Encryption algorithm
. T E 19 4
Step-1: Let the Plain text P= =
X T 23 19

Step-2: Alice computes C;= Px(FL)

19 4 I 2 23 50
X =
23 19 1 3 42 103

23 50 | 42 103
Mod 26 23 24 16 | 25

23 24
Ci=
16 25

Step-3: Alice Compute Inverse of Affine transformation £~ (y)=a"' (y—b)mod 26 fora=5 & b= 18

y 23 24 16 25
y-18 5 6 -2 7
21(y-18) 105 126 -42 147
21(y-18) mod 26 1 22 10 17
1 22
Cz =
10 17

Step-4: Alice computes C,x(FL)=C;

1 22 1 2 23 68
X =
10 17 1 3 27 71
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23 68 27 71

Mod 26 23 16 1 19

Step-4: Encrypted message C; is XQBT
Decryption algorithm
Step-1: First Decrypted Message is XQBT

Step-2: Bob compute C; x (FL)'=P,

23 16 3 2 53 30
X =
1 19) (-1 1 -16 17

53 -30 -16 17

Mod 26 1 22 10 17
1 22
P2 =
10 17

Step-3: Now applying affine transformation E(x)=(ax+b) mod 26 fora=5 & b= 18

X 1 22 10 17
5x+18 23 128 68 103
(5x+18)mod26 23 24 16 25
Decrypted message is X Y Q Z

23 24
P1 =
16 25

Step-4: Bob Compute P;x(FL)" to get original message P

23 24 3 2 45 22
now X =
16 25 -1 1 23 -7

45 -22 23 -7
Mod 26 19 |4 23 19
Second Decrypted message is T E X T
. F FY_(23
Case-3: For i=3 we get FL = =
L L) |3 4

Encryption algorithm:

) T E 19 4
Step-1: Let the Plain text P= =
X 23 19

Step-2: Alice computes C;= Px(FL)

19 4 2 3 50 73
X =
23 19) (3 4 103 145

50 73 103 | 145

Mod 26 24 21 25 15
24 21
C] =
25 15

Step-3: Alice Compute Inverse of Affine transformation £~ ( y) =a’ ( y— b) mod 26 fora=35 & b=21
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y 24 21 25 15
y21 3 0 4 %
21(y-21) 63 0 34 -126
21(y-21) mod 26 11 0 6 4

11 0
C2:
6 4

Step-4: Alice computes C,x(FL)=C;
11 0 2 3 22 33
X =
6 4 3 4 24 34

Step-4: Encrypted message C; is WHYI

22 33 24 34

Mod 26 22 7 24 8

Decryption algorithm
Step-1: First Decrypted Message is WHYI

Step-2: Bob compute C; x (FL)'=P,

22 7)) (-4 3 -67 52
X =
24 8 3 2 =72 56

-67 52 -72 56

Mod 26 11 0 6 4
11 0
P2:
6 4

Step-3: Now applying affine transformation E(x)=(ax+b) mod 26 fora=5 & b=21

X 11 0 6 4
5x+21 76 21 51 41
(5x+21)mod26 24 21 24 15
Decrypted message is Y \ Y

24 21
P1 =
24 15

Step-4: Bob Compute P, x(FL)"' to get original message P
24 21) (-4 3 =33 30
now X =
25 15 3 2 =55 45
-33 30 -55 45

Mod 26 19 23 19
Second Decrypted message is T E X T

N

VIGENERE CIPHER

. F F, 11
Case:1 For i=1 we get FL = L =

1

Encryption algorithm:
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) G O 6 14
Step-1: Let the Plain text P = =
L D 11 3

Step-2: Alice computes C;= Px(FL)
6 14 11 34 20
X =
11 3 21 17 14
34 20
C]Z
(17 14}

Using vigenere ciphers for key

L (6] \Y E

11 14 21 4

Step-3: Alice compute reverse offset rule with the first encrypted message C;

34 20 17 14
34 20 17 14
Reverse offset rule with key - - - -
11 14 21 4
23 6 -4 10
Mod 26 23 6 22 10
Second Encrypted message is X G W K

23 6
Second Encrypted message is C,=
P gel [22 10}

Step-4: Alice compute Cyx(FL)=C;

23 6 I 1 35 29
X =
22 10 21 42 32

35 29 | 42 32
Mod 26 9 3 16 6
Third encrypted message is J D | Q H
Step-5: Alice send message C; to bob JDQH
Decryption algorithm
Step-1: First Decrypted Message is JDQH
Step-2: Bob compute C; x (FL)'=P,
9 3 -1 1 -3 6
X =
16 6 2 -1 -4 10
Step-2: Bob Decrypts with the offset rule with vigenere transformation
-3 6 -4 10
-3 6 -4 10
Offset rule with key + + + +

11 14 |21 4

8 20 | 17 14
Mod 26 8 20 | 17 14
Second Decryption message is I U | R 0
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I U
P2=
o)

Step-3: Bob Compute P,x(FL)" to get original message P

8 20 -1 1 32 -12
now X =
17 14 2 -1 11 3

Mod 26 6 14 11 3
Third Decrypted message is G 0 L D
. F FY_(12
Case-2: Fori=2 FL = =
L L 1 3
Encryption algorithm
) N E 13 4
Step-1: Let the Plain text P = =
w S 22 18
Step-2: Alice computes C;= Px(FL)
13 4 1 2 17 38
X =
22 18) (1 3 40 98
17 38
C]Z
40 98
Using vigenere ciphers for key
L (6] \Y E
11 14 21 4
Step-3: Alice compute reverse offset rule with the first encrypted message C,
17 38 40 98
17 38 40 98
Reverse offset rule with key - - - -
11 14 21 4
6 24 19 94
Mod 26 6 24 19 16
Second Encrypted message is G Y T Q
. 6 24
Second Encrypted message is C,=
19 16
Step-4: Alice compute C,x(FL)=C;
6 24 1 2 30 84
X =
19 16 1 2 35 86
30 84 | 35 86
Mod 26 4 6 9 8
Third encrypted message is E G |J I

Step-5: Alice send message C; to bob EGJI
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Decryption algorithm
Step-1: First Decrypted Message is EGJI
Step-2: Bob compute C; x (FL)'=P,

b sH T

Step-2: Bob Decrypts with the offset rule with vigenere transformation

6 2 |19 -10
6 2 |19 -10
Offset rule with key + + + +

11 14 | 21 4
17 38 | 40 20

Mod 26 17 12 | 14 20
Second Decryption message is R M| O U
R M
P2=
o U

Step-3: Bob Compute P,x(FL)"' to get original message P
17 12 3 -2 39 -22
now X =
14 20) \-1 1 22 -8
39 -22 22 | -8

Mod 26 13 |4 22 | 18
Third Decrypted message is N E W |S

. F, F, 2 3
Case-3: Fori=3 FL = =
L L, 3 4

Encryption algorithm

) T E 19 4
Step-1: Let the Plain text P = =
C H 2 7

Step-2: Alice computes C;= Px(FL)
19 4) (2 3 50 73

X =
2 7)\3 4 25 34

50 73
C]Z
25 34

Using vigenere ciphers for key

L o \Y E

11 14 21 4

Step-3: Alice compute reverse offset rule with the first encrypted message C,

50 73 25 34
50 73 25 34
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Reverse offset rule with key - - - -
11 14 21 4
39 59 4 30

Mod 26 13 7 4 4

Second Encrypted message is N H E E

13 7
Second Encrypted message is C,= (4 4}

Step-4: Alice compute Cyx(FL)=C;

13 7y (2 3 47 67
X =
4 4 3 4 20 28

47 | 67 | 20 | 28
Mod 26 21 15120 |2
Third encrypted message is \ P | U C

Step-5: Alice send message C; to bob VPUC
Decryption algorithm
Step-1: First Decrypted Message is VPUC

Step-2: Bob compute C; x (FL)'=P,

21 15) (4 3 -39 33
X =
20 2 3 2 -74 56

Step-2: Bob Decrypts with the offset rule with vigenere transformation

-39 33 | -74 56
-39 | 33 | -74 56
Offset rule with key + + + +
11 14 | 21 4
28 | 47 | -53 60
Mod 26 24 21 | 25 8
Second Decryption message is Y \4 Z 1

Step-3: Bob Compute P,x(FL)"' to get original message P
24 21\ (-4 3 -33 30
now x =
25 8 3 =2 -76 59
-33 30 -76 59

Mod 26 19
Third Decrypted message is T E C H

A~
)
~

Conclusions

In the proposed technique only two keys were employed for triple encryption instead of using three keys for three layers of
encryption. Time complexity is less for encryption by this method than the original triple encryption method.
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