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ARTICLE INFO  ABSTRACT 
 
 

The frequency of rerun of any stock consistently fluctuates due to the competing forces of supply 
and demand responding to changes in the share prices by investors. Historically, gold prices have 
generally produced favourable returns during both challenging and thriving times, positioning 
gold as a means for safeguarding and enhancing wealth. In this study, we present a Bayesian 
Generalized Auto-Regressive Conditional Heteroskedastic (GARCH) volatility model for daily 
gold price returns based on the most recent 2500 daily prices. The present research aims to 
showcase the use of the stan-garch function from the ‘bayesforecast’ of (R-package) to fit a 
GARCH (1, 1) model to the gold price returns data, assuming Student-t and normal error 
distributions. The results of the research show that the model effectively captures the data. It is 
also concluded that the effects of prior shocks will result in a lasting impact on the future 
volatility of the daily gold price returns. 
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INTRODUCTION 
 
Bayesian statistical conclusions about a parameter θ, are made in 
terms of probability statements using an observed sample value, say y, 
collected from the concerned population. These probability 
statements, p(θ/y) are conditional on the observed value of y. Let the 
unconditional distribution of θ be p(θ), called ’prior” and the joint 
distribution of y and θ be p(y,θ), called likelihood, Then, the Bayes 
rule links, p(θ) and p(y,θ), to get the conditional posterior distribution 

p(θ/y) = 
 ௣(ఏ)  ௣(௬,ఏ)

∫  ௣(ఏ) ௣(௬,ఏ)ௗఏ
 

 

 
Markov chain simulation (also called Markov chain Monte Carlo or 
MCMC) is a general technique based on drawing θ values from 
approximate distributions and adjusting them to better approximate 
posterior distribution, p(θ/y). The sampling is to be done sequentially, 
with the distribution of the sampled drawings depending on the last 
value drawn; hence, the drawings form a Markov chain (MC). The 
transition probability distributions of the MC must be constructed so 
that the Markov chain converges to a unique stationary distribution 
that is the posterior distribution, p(θ/y). Several books provide 
sampling algorithms for implementing MC simulation methods: the 
Gibbs sampler and the Metropolis-Hasting algorithm are 
computational approaches based on approximation.  

 
 
 
Since the R language is an important tool for time-series analysis, in 
this paper we use the Rpackages Bayesforecast and MSGARCH to 
model and estimate the value of GARCH and density forecasts. 
 
ARCH and GARCH Models: An autoregressive conditionally 
heteroskedastic (ARCH) model is a statistical model used to analyse 
historical volatility to predict future volatility. The GARCH model is 
an extension of the ARCH model that also allows for variance in the 
error term. ARCH models were created in the context of econometric 
and finance problems having to do with the amount x(t) of 
investments in stock that may increase (or decrease) per period. Our 
interest in this case is to formulate the best model on 
 

y୲ = log (x୲) - log (x୲ିଵ)                                ………………..(1) 
 
yt of (1) is the logarithm of the ratio of this time’s value to last time’s 
value. 
 

GARCH models are used when the variance of the error space is 
unequal over time. That is, the error term is heteroskedastic. 
Heterogeneity describes the irregular variation pattern of an error term 
or variable in a statistical model. Essentially, wherever there is 
heteroskedasticity, observations do not conform to a linear pattern, but 
they tend to cluster. In particular, the variance of the error term in 
GARCH models is assumed to vary systematically, conditional on the 
average size of the error terms in previous periods. 
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LITERATURE REVIEW 
 
Many details on the Bayesian Estimation of GARCH Models can be 
found in (Ardia(2008a)), (Ardia(2008b)), (Ardia(2009)), (Ardia and 
Hoogerheide,(2010)), (Ardia, Keven, Kris, Leopoldo, Denis-
Alexandre (2019)), and (Bollerslev (1986)). A few asymmetric 
GARCH-type models for asymmetric volatility characteristics 
analysis and regim switching have been discussed in (Chen et al., 
(2019)), (Maciel, Leandro (2021)). Non-parametric methods and 
volatilityvolatility estimation methods for financial risk factors have 
been discussed in (Naik and Mo- Han (2021)),(Makatjane and 
Moroke (2022)) and (Oseifuah and Korkpoe (2019)). A dynamic 
volatility modelling of Bitcoin using a time-varying transition 
probability Markov-switching GARCH model is well studied by (Tan 
et al. (2021)). (Vats and Knudson (2020)) revisited the Gelman-Rubin 
Diagnostic, and thus made some improvements towards the 
estimation of GARCH models. (Xiao, Yang (2021)) introduced a 
forecasting extreme risk using regime-switching GARCH models. 
(Villa and Walker (2014)) used objective prior type for the number of 
degrees of freedom of a t distribution in their Bayesian analysis of 
time series. 
 
Organization of Sections: Section 2 deals with GARH’s model for 
retrieving daily price charts for gold stocks. Section 3 describes the 
prior and posterior distributions of the parameters of the studied 
GARCH (1,1) model. Section 4 obtains additional results on the 
estimation of GJRGARCH with the ’MSGARCH’ package. Section 5 
presents the conclusion. 

 
GARCH Model for Gold Price Returns: Understanding volatility is 
straightforward, yet its modelling proves to be challenging. In the 
realm of finance, volatility refers to standard deviation, highlighting 
the extent to which the values of financial assets fluctuate. Volatility 
modelling is grounded in the rate of return of an asset, also known as 
realized volatility, to grasp uncertainty and provide us with reliable 
estimates of reality. How are we prepared to enhance predictive 
performance by leveraging both the Bayes framework model and 
machine learning models such as support vector regression, neural 
networks, and deep learning? This will enable us to effectively 
compare the predictive capabilities. 

 
The main aim of the ARCH model introduced by (Engle (1982)) is to 
describe the variance σ2 of a random variable with the following 
equation: 
 

𝜎௧  
ଶ =  𝜈𝑉௧ + ෍

௤

௜ୀଵ

𝛼௜𝑟௧ି௜     

 
• rt is the return series of the stock price whose variance σ2 is to be 

modeled. 
• VL is the long-term variance of stock. 
• γ and α are weights that satisfy γ +  Ʃ 𝛼_𝑖 =  1 
•  q is the order of the auto-regressive process, i.e., is ARCH(q). 
• γ VL is often expressed as ω or α0 

 
GARCH (1, 1) Model 
 
A GARCH (1,1) is 
 
𝑉𝑎𝑟(𝑦௧ |𝑦௧ିଵ) = 𝜎௧

ଶ =      𝛼଴  +   𝛼ଵ 𝑦௧ିଵ
ଶ +    𝛽ଵ 𝜎௧ିଵ

ଶ                    (2) 
 
where, α0 ≥ 0, α1 ≥ 0 and β1 ≥ 0 to avoid negative variance.  Define 
the term yt as a function of a white noise ϵt~N (0,1) and inverted 
gamma function IG i.e., λt as in 
 

𝑦௧ =   𝜇 + 𝜀௧   ට(  
ఊିଶ

ఊ
𝜆௧ 𝜎௧)       ; 𝑡 ≥ 1                                           (3) 

 
 

where λt follows inverted gamma IG (ν/2, ν/2) function, ν> 2 is an 
integer. The restriction on the degrees of freedom parameter ν > 2 
guarantees the finite conditional variance, and the restrictions on the 
GARCH parameters α0 > 0, α1 > 0, and 𝛽1 > 0 ensures positive 
variance σ2. 
 
We utilize Bayesian estimation techniques on daily observations of 
gold price log returns, focusing on 2500 data points. This allows us to 
generate forecasts for n = 252 values at the tail end. To identify any 
unusual observations, we first plot the yt series in Figure 1 and the 
corresponding forecast version in Figure 2. 
 

 
Figure 1. Plot for original yt to identify any unusual observations 

 

 
Figure 2. Plot based on the predicted yt for the next few days 

 
Prior and Posterior distributions of all parameters of GARCH (1,1) 
Model: Several R packages provide functions to estimate GARCH 
models using the maximum likelihood method such as ’fGarch’ and 
’rgarch’. The bayesian  theory offers a valuable substitute for 
modeling outcomes, assessments, model variability, model groups, 
and probabilistic assertions regarding functions (which can be 
nonlinear) of model parameters. In the model proposed we use 
truncated normal priors on the GARCH parameters 𝜷 and α = (α0, 
α1)

′. The prior distributions p(α) on α = (α0, α1) is a bivariate truncated 
Normal distribution: 

 
p(α) 𝖺 N2(µα, Σα) I(α>0) where I(α>0) is the indicator function             (4) 
 
The prior distribution p(𝛽) on 𝛽 is a univariate truncated Normal 
distribution: 
 

p(𝛽) 𝖺 N (µβ, Σβ) I(β>0) where I(β>0) is the indicator function             (5) 
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The prior distribution of vector λ = (λ1, . . ., λT )′ conditional on ν is 
found by noting that the components λt are independent and 
identically distributed from the inverted gamma, which yields 
posterior information. 
 
The prior distribution p (λ/ ν) is a truncated exponential distribution: 
 
𝑝(𝜆|𝜈)   

=   ቀ
𝜈

2
ቁ

೅ഌ

మ
 ቂ𝛤 ቀ

𝜈

2
ቁቃ

ି்

൭ෑ

்

௧ୀଵ

𝜆௧൱

ି( 
ഌ

మ
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  𝑒𝑥𝑝 ൥−
1

2
෍

்

௧ିଵ

𝜈

𝜆௧
൩       (6) 

 
The prior distribution on the degrees of freedom parameters is a 
translated exponential with parameters λ∗>0, δ ≥2 
 
p(ν) = λ∗ exp [−λ∗ (ν − δ)]I(ν>δ)                                                                         (7) 
 
For high values of λ, the prior mass is focused around δ, and the 
limited degrees of freedom can be established. All of these were 
specified by Stan's suggested guidelines. The posterior distributions 
are illustrated in Figures 3 and 4. It is noted that the posteriors are 
converging. Moreover, while adhering to the model’s fit, it does not 
fully accommodate the data as the model fails to represent the 
dependency structure in the location parameter. Next, we move on to 
examine the model residuals. The check residual’s function computes 
the posterior mean of the residuals and generates a plot. Keep in mind 
that the plot alone is inadequate to confirm the normality and 
stationarity assumptions, but they serve as a preliminary indication of 
the adjustment. The residual series (Upper part) of Figure 3 appears to 
be stationary. Nevertheless, the histogram and quantile graph (middle 
part) indicate that the model exhibits heavy tails because of the series’ 
significant volatility. Drawing from these or earlier findings, we 
ultimately forecast the model for the upcoming days in Figure 4. 
 
Markov-switching GARCH model for {yt}: GARCH models within 
Markov switching frameworks have gained popularity as techniques 
to capture volatility alterations in a time series' conditional variables. 
The R package MSGARCH enables us to carry out simulations, 
maximum likelihood, and Bayesian Markov chain Monte Carlo 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
estimators for an extensive range of GARCH models. The   package 
offers methods for forecasting one-step and multi-step for the entire 
conditional density of the variable we are focused on. Tools for risk 
management are also offered to assess conditional volatility, value at 
risk (VoR), and expected shortfall. The paper introducing the original 
autoregressive conditional heteroscedasticity (ARCH) model is (by 
Engle (1982)), while its generalization to GARCH was introduced by 
(Bollerslev (1986)) and (Engle and Ng(1993)). Also, (Ardia (2009)) 
discussed the Bayesian estimation of a Markov- Switching Threshold 
Asymmetric GARCH Model with Student-T Innovations. To obtain 
true changes in volatility relative to regime changes, the parameters of 
the GARCH model must change over time in a hidden Markov 
fashion. This approach is called the Markov Switching GARCH 
(MSGARCH) model, which produces value forecasts that can adapt 
to changes in the zero-volatility level. Assume that the expected value 
of log return series yt is zero and {yt} is serially uncorrelated. 
Following (Ardia et al, (2018)), we formulate our GARCH model as 
below: 
 
yt/(st = k, I(t−1)) ∼ D(0, hk,t, ξk),  hk,t = h(y(t−1), h(t−1), θk)                      (8) 
 
where D(0, hk,t, ξ) is a continuous distribution with a zero mean, a 
time-varying conditional variance hk,t in regime k, and a vector ξk. of 
additional shape (e.g., tail and asymmetry) parameters and the 
additional regime-dependent vector of parameters is θk. The state 
variable st evolves according to a first–order homogeneous Markov 
chain with a finite number of states. K. In addition, I(t−1)the term of 
the equation (8) denotes the information set available up to (t−1) and 
θk denotes the regime–dependent vector of parameters. Following 
(Bollerslev (1986)), we have a symmetric GARCH(1,1) model as in 
the statement (9): 
 
h(k,t) = α0,k + αk y2 1 + βk  h(k,t−1)                                          (9) 
 
Following (Glosten, Jagannathan, and Runkle (1993)), we suggest an 
asymmetric GJRGARCH (1, 1) model as in the equation (10): 
 
h(k,t) = α0,k + (α1,k + α2,k I{y(t−1) < 0})y2 1 + βk h(k,t−1)           (10) 
 

Table 1. Creation of the GARCH (1,1) Model through the stan-garch function 
 

 mean SE 5% 95% ESS Rˆ 
µ0 -0.0002 0.0000 -0.0004 0.0001 933.1439 0.9999 
α0 0.0009 0.0000 0.0004 0.0016 934.6304 1.0052 

arch 0.6598 0.0067 0.2680 0.9648 967.8143 1.0007 
garch 0.4574 0.0083 0.0557 0.9026 1065.6318 0.9992 

ν 2.0362 0.0005 2.0159 2.0628 976.0091 1.0011 
loglik 8612.7616 0.7053 8577.1698 8649.3006 924.0692 1.0012 

 

 
 

Figure 3. Plot for the estimated posteriors 
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where I{y(t−1) < 0} is an indicator function. 
 
State Process st : We assume that the underlying state process st 
evolves on a state space S= {1, 2, . . ., K} according to an unobserved 
first-order ergodic homogeneous Markov chain with transition 
probability matrix P= (pi,j= P(s =j/st−1 = i)) is the probability of a 
transition from state st−1 to st. 
 
𝑃 = (𝑝ଵଵ 𝑝ଵଶ  ⋯ 𝑝ଵ௞ 𝑝ଶଵ 𝑝ଶଶ  ⋯ 𝑝ଶ௞  ⋮ ⋮  ⋯  ⋮  𝑝௞ଵ 𝑝௞ଶ  ⋯ 𝑝௞௞ )                   (11) 
 
We estimate the model parameters with a Bayesian approach (via 
MCMC simulation). This allows us to write interesting probability 
expressions on (non-linear functions of) model parameters, such as the 
leverage effect and the free variance in each mode k. We use diffuse 
priorities and simulate Metropolis adaptive random samples to 
generate draws from the posterior. In addition, we impose restrictions 
on the parameters to ensure that the function of those volatilities under 
the MSGARCH specification cannot be generated by a single–regime 
specification. Both are achieved through the prior specification. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2 shows the estimates of the parameters of the GJRGARCH 
Model through ML and MCMC methods with several regimes k=2. 
Under each of the ML and MCMC approaches, the stationary 
distribution {𝜋ଵ,𝜋ଶ} of switching between the two regions is also 
computed to study the long-run effects. 
 
In-sample analysis of the daily log returns of gold prices: We now 
centre on an empirical outline utilizing the later 4151 day’s log 
returns of our gold price information set. We outline how the R 
bundle MSGARCH can be utilized to demonstrate comparison, 
state/regime smoothing, and instability shifting. Estimation through 
MCMC is additionally examined. The plot of the time series 
containing 2500 data points is presented in Figure 1. Well-known 
stylized truths observed in financial time series, such as volatility 
clustering and nearness of outliers, are apparent in Figure 1. For the 
sake of illustration, we consider the asymmetric two-state 
MSGARCH model, where a GJRGARCH variance specification with 
a student-t distribution is assumed in each regime. We then fit the 
model with the ML estimation to the same data set and the results are  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Estimation of the GJRGARCH Model through ML and MCMC methods with k=2 
 

parameter ML estimate Method se MCMC mean posterior mean sd 
α0,1 0 0 0 0 
α1,1 0.0224 0.005 0.0074 0.0227 
α2,1 0.0002 0.0006 0.2005 0.1262 
β1 0.977 0.005 0.259 0.1694 
ν1 4.8087 0.3558 5.4915 0.5554 

α0,2 0 0 0 0 
α1,2 0 0.0002 0.0547 0.0075 
α2,2 0.1279 0.0273 0.0007 0.0065 
β2 0.9318 0.0143 0.9405 0.0078 

P1,1 0.978 0.0154 0.046 0.0485 
P2,1 0.0431 0.0278 0.0559 0.0475 

stationary π1=0.662 π2=0.338 π1=0.0554 π2=0.9446 

 

 
Figure 5. Top graph: The smoothed probabilities for regime two. Bottom graph: The filtered volatility of the overall process 
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ordered  concerning the unconditional variance in each regime, from 
lower to higher values, when regimes have the same model 
specification. The outputs of fit.ml = FitML (spec = ms2.garch.n, 
data= gold price returns) and that of fit.mcmc =FitMCMC (spec = 
ms2.garch.n, data = gold price returns) are given in Table 2. 
Parameter estimates of Table 2 show that the evolution of volatility is 
heterogeneous across the two regimes. Without a doubt, we first note 
that the two regimes report different unconditional volatility levels: a 
different reaction to past returns: α2,1 = 0.0002 vs. α2,2 = 0.1279. The 
first regime reports α1,1+(1/2) α2,1+𝛽1 =0.9995 and the second regime 
has α1,2+ (0.5) α2,2 +𝛽2 =0.99575 which implies that the first regime 
has higher persistence of the volatility process than that of the second 
regime. To evaluate the goodness–of–fit of the models, we use the 
Deviance information criterion (DIC) obtained from the MCMC 
estimation. Other useful statistics are the acceptance rate which, for 
the MCMC sampler, is 28,5 % and the deviance information criterion 
(DIC) of the test is -27267.560.  Filtered, anticipated, and smoothed 
probabilities can be computed beginning from evaluated objects 
utilizing the State (.) function. It produces Viterbi records as a matrix 
of measurement, speaking to decoded states agreeing to the Viterbi 
algorithm point by point in (Viterbi (1967). For instance, Smooth 
probabilities of being within the second regime (k = 2) can be 
computed with the following code: smooth.prob = State (fit.ml) 
Smooth Prob[, 1, 2, drop = TRUE] 
 
Figure 6 displays the smoothed probabilities of being in regime two 
(high unconditional volatility regime), superimposed on the gold price 
log-returns (top graph) as well as the filtered volatility of the overall 
process (bottom graph). Volatilities are extracted from the estimated 
object using the function Volatility. As expected, when the smoothed 
probabilities of regime two are near one, the filtered volatility of the 
process sharply increases. Interestingly, we further note that the 
Markov chain evolves persistently over time and that, in the limit, as 
reported by the ML method (Stable probabilities), the probabilities of 
being in the two states are about 5.54% and 94.46%. 
 

 
 

Figure 6. Scatter plot of Posterior 
 

Figure 6. Scatter plot of posterior draws from the marginal distribution 
of α1,1 and α1,2 obtained with the adaptive random walk strategy. The 
blue square reports the posterior meaning, and the red triangle reports 
the ML estimate. The graph is based on 2,500 draws from the joint 
posterior sample. The posterior distribution of mixture and Markov-
switching models: A  remark observation is that the MCMC 
procedures can be used to explore the joint posterior distribution of 
the model parameters. Specifically, the estimation method is a 
random-walk Metropolis-Hastings algorithm with a coerced 
acceptance rate. We observed excellent performance in the context of 
(identified) mixture models. Using the ML parameter estimates as 
starting values, we can estimate the model by MCMC. 

 
 
Figure 7: Plot for original yt to identify any unusual observations 

 

 
Figure 8. Plot based on the predicted yt for the next few days 

 
Now, we wish to produce results with 2,500 draws of the posterior 
sample for the parameters α1,1 and α1,2. By simulation, we can apply 
Bayesian estimation to make distributional (probabilistic) statements 
on any (possibly nonlinear) function of the model parameters. Further, 
for each drawing in the posterior sample, we can compute the 
unconditional volatility in each regime, to get its posterior 
distribution. Figure 7 displays the posterior distributions of the 
unconditional annualized volatility in each regime. Each blue square 
reports the posterior meaning while the red triangle reports the ML 
estimate. Notice that both distributions exhibit positive skewness. We 
can also extract the posterior draws from an estimated ‘MSGARCH − 
MCMC − FIT’ object and then compute the predictive density for each 
of them. In addition, we can provide the code for a backtest analysis 
of the’ms.gjr.s’ model against its single-regime counterpart. 

 
gjr.s = CreateSpec (variance.spec = list (model = 
”gjrGARCH”), distribution.spec = list (distribution = ”std”), 
switch.spec = list(K = 1)) 
models = list (gjr.s, ms.gjr.s) 

 
Next, we set the backtest settings. We decide to test the performance 
of the models on 1000 out-of-sample observations and focus on one-
step value-at-risk predictions at the 5% risk level. Predictions are 
based on windows of 1500 observations, and models are recalibrated 
for 100 observations for frame rate purposes. We initialize a vector for 
out-of-sample returns and a matrix of VaR forecasts. For each new 
observation, we use the last 1500 data points to predict the one-step 
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VaR at the 5% level with a storing. Models are estimated by the ML 
method every 100 observations in a window out-of-sample. In Figure 
8 we display the resulting VaR forecasts of the two models together 
with the realized returns. The results of this paper are based on 
simulations of the adaptive MCMC scheme. Therefore the results 
depend on the value of the set.seed and the linear algebra library such 
the Cholesky decomposition and the eigenvalue calculation used. 
However, differences may accumulate over MCMC iterations, and so 
new MCMC results may differ from those reported in this paper. 
 

CONCLUSION 
 
Bayesian modeling is the process of fitting a probability model to a 
data set and generalizing the result to a (posterior) probability 
distribution over model parameters and unobserved quantities, such as 
predictions of new observations. For these purposes, we used (i) the 
stan − garch function of the Bayesforecast of the R-package in part 1 
and (ii) some functions of the MSGARCH package in part 2 and 
estimated a volatility model of gold prices using daily observations on 
log-returns. We obtained some useful features of these different 
models and illustrated their use in analysis to understand how 
Bayesian estimation differs from traditional approaches. In part 1, we 
proposed a volatility model for the returns of the gold price series of 
everyday observations utilizing the stan-garch work of the Bayes 
forecast package. We utilized the later 2500 observations in phase-1 
and 4150 returns in phase-2, to assess the Bayesian GARCH (1, 1) 
parameters. This study centered on discussions under the presumption 
of a student’s t- distribution and a normal error distribution. Plots for 
the initial log returns of gold prices and for the predicted series are 
drawn using an estimated model. In addition, using the posterior 
distributions of the parameters of the fitted GARCH (1, 1) model, 
charts for such posteriors are drawn to check the  stationery and other 
related features, In  part 2, using the R package MSGARCH, we 
attempted to estimate, simulate, and perform forecasts with Markov-
switching GARCH models. Our focus was to create various single-
regime and two-regime-switching specifications with different 
scedastic functions and conditional distributions. The outcomes of 
GARCH models assure us of their effectiveness in modelling 
volatility across various types of financial data and can be expanded to 
incorporate additional factors that are recognized to affect volatility,   
to capture the genuine dynamics of financial time series and enhance 
prediction accuracy. 
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