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ARTICLE INFO                                       ABSTRACT 
 
 
 

A factorization procedure for a given totally positive (TP) matrix- a matrix with all positive 
minors - is introduced. The strategy is to reduce a column to corresponding column of the identity 
matrix. Factors so obtained are triangular matrices with constant row or column entries. Such 
matrices and their inverses with simple structures can be constructed using the entries of a given 
non-zero vector without any computations among the entries. The significance of the factorization 
is that in general it presents the column and row entries of a matrix as constituted by partial sums 
of the column and row entries of the factors. Hence for a TP matrix if the entries of its first 
column and row are in ascending order, this order property will be extended to all its other rows 
and columns. This order property of entries of the columns and rows will be manifested at each 
step of the factorization. In an independent way, how factors with all positive entries induce this 
order property and contribute to the total positivity of a matrix are discussed. Factorization of a 
given matrix

nMA  in the proposed way leads to simple procedures to determine its total 

positivity. The convenience of the procedure based on set of 2X2 minors which include the first 
column and set of 2X2 minors which include adjacent rows and columns is that it does not call for 
factorization of A. It involves n3/3 operations only as against existing n3/2 operations in literature. 
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INTRODUCATION 
 
A Matrix whose all minors are positive is called a totally 
positive matrix (TP). Micchelli and Gasca (1996) have 
published a book on total positivity of matrices which will be 
of value to mathematicians, engineers and computer scientists 
whose work involves applications of total positivity to 
problems in the theory of spline functions, numerical 
quadrature, nonlinear analysis, entire functions, probability, 
mathematical biology, statistics, approximation theory, 
combinatorics, geometric modeling, matrix theory and integral 
equations.  In the area of information technology, factorization 
of totally non-negative matrices finds applications in feature 
extraction, Hongli Yang and Guoping He (2010) and Reazaie 
et al. (2011). How matrix equality comes handy in 
determining graph isomorphism is discussed Khadija Riaz            
et al. (2005), by repositioning the entries and it may be noted 
that two matrices are equal if they have the same factors.  
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LU factorization of TP matrices has been investigated by 
Cryer (1973, 1976), Ando (1987), and Carl de Boor and 
Pinkus (1977). It is natural to ask whether we can test for total 
positivity without computing all the minors. To this Cryer 
(1976) and Gasca and Pena (1992) show how total positivity 
can be tested in O(n3) operations by testing the signs of the 
pivots in suitable eliminations schemes. The later paper 
employs Neville (pair wise) elimination, which is described by 
Gasca and Pena (1994). Note that all those tests proposed 
involve complete factorization of the given matrix. For an 
insightful survey of totally nonnegative (TN) matrices, see 
Fallat (2001).   
 
Here we are going to introduce triangular factors of a given TP 
matrix with constant row or column entries. This structure of 
the factors leads to the order property of column and row 
entries of a given TP matrix. It is discussed how such factors 
contribute to the total positivity of the given matrix in an 
independent way. This ordered columns might be useful for 
determining any statistically significant sources of variation, 
as presented in Amenta Pietro et al. (2008). The advantage 
here is that we need not perform a complete factorization of 
the matrix considered. The organization of the paper is as 
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follows. First we will introduce the proposed triangular factors 
and basic properties that make them ideal choice for 
representing factors of TP matrices. After that procedures for 
determining total positivity of a given matrix will be 
discussed. This is followed by computational cost of the 
approach, numerical demonstration of the procedure and 
concluding remarks.  
 
Triangular Factors and Properties  
 
Let a non-zero vector x=[x1 x2 … xn]

T; xi ≠0 ,i=1,2,…,n  be 
given. Consider the lower bidiagonal matrix and its inverse 
defined as below. 
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Typical examples for the case n=3 is as below. 
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The columns in (2) are consisting of the given vector itself and 
its projection to the subspaces of dimension k=n-1, n-2,…,1. 
These columns form a basis for the n-space. Since the first 
column itself is the very same vector, the linear combination is 
from e1. So B(x)x=e1  and  B(x)-1e1= x. If we apply appropriate 
matrices B(x) sequentially to the columns of a given matrix, 
then corresponding triangular factors can be presented using 
B(x)-1 in a convenient way. If in the given vector x, xk ; 
k=1,2,…,j  are zeros and  xk ≠ 0 ; k=j+1,j+2,…,n  then the first 
j rows in B(x) can be set identical to that of the identity matrix 
and then B(x)x= ej+1 and    B(x)-1ej+1= x. In general B(x) has to 
be appropriately tuned with the rows and columns of the 
identity matrix so that mapping of x to a column of the identity 
matrix is possible. Such tunings may result in mapping x to 
another vector y whose entries will be ±1 and zeros. There 
involves no computations among the entries to constitute these 
matrices as against computation of suitable multiples for 
elimination in Gauss or Neville decomposition. Since 
intermediate quantities are exactly maintained in the inverse of 
the operator matrix and as the mappings are to columns of the 
identity matrix, the given vector is exactly reconstructed. 
Notably pivoting techniques to arrive at suitable multiples 
leading to stable decomposition are not required in the case of 
TP matrices as they satisfy the without row or column (WRC) 
exchange condition. The matrices in (1) and (2) are the results 

of applying a sequence of column or row operations in 
corresponding diagonal matrices. Consider a lower triangular 
matrix  
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Then we have    
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Proposition 1. The matrices 
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It is evident that in the matrices (1) and (2) whenever a 
diagonal element is zero it is equivalent to the cancellation of 
the column operations with the particular diagonal element. 
Thus the column is reverted to the corresponding column of 
the identity matrix in (3) and (4).  
 
Proposition 2. From proposition (1) and from (3) and (4) it 
follows that   
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Equations (6) and (7) are the EBD of the matrices used in this 
factorization technique and equation (7) reveals the usefulness 
of this representation with respect to TP matrices. If xi>0 ; for 
i=1,2,…,n  then all the right side matrices in (7) are TP. 
Because of the closure property of TP matrices, it follows that 
B(x)-1 is a TP matrix. 
 
Consider the matrix  
 

)diag(x)B(x(x))( -1BxL               (8) 

 
This is an interesting lower triangular matrix and this 
construction (8) is possible only when the entries of x are 
distinct and non-zero. A typical 4X4 matrix of the type (8) is 
as below. 
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The matrix in (9) has an eigen system where in the general 
case eigen vector corresponding to x1 is [x1  x2  … xn]

T, eigen 
vector corresponding to x2 is [0  x2  … xn]

T and so on and that 
corresponding to xn is [0  0  … xn]

T. The diagonal entries will 
constitute terms (xj - xj+1) of entries of each column of the 
matrix (9) and fractional terms will be determined by entries 
of its eigen vectors. For example, (xj

n
 - xj+1

n) will be the terms 
corresponding to its nth power whereas the fractional terms 
will not be changing. Thus merely by looking at the matrix, 
one can easily derive its eigen system. The attraction is that its 
inverse and any power can be easily arrived at without any 
computations. In the open interval (0,1), this system attains the 
minimum and maximum when the off-diagonal entries are 
uniformly approaching zero. This matrix corresponds to all 
strictly monotonic decreasing and increasing sequences in the 
interval (0,1) and correspondence among such sequence of 
matrices are realized by similarity transformation using 
appropriate diagonal matrices.  
 
Proposition 3 
 
Given a non-zero n-vector x=[x1  x2  … xn]

T ; xi ≠0 ,i=1,2,…,n 
then 2n-1 bidiagonal matrices can be constructed with absolute 
values of the entries same as that of type (1), all of which will 
map x to e1. 
 
Proof: Let B be a lower bidiagonal matrix and consider the 
equation 
 

0121  kk xx            (10) 

 
In (10) let α1and α2 be two adjacent entries of a row of B. 
Assume that α2 is a diagonal element and α1 is the 
corresponding sub-diagonal element in B. For the first row in 
B, there is only one unique choice as α1=0;α2=1/x1. For the rest 
of the rows, assigning one of these unknowns a value, the 
other can be obtained. So for the remaining 2(n-1) entries, 
there are infinitely many choices.  The case with Neville 
elimination is to fix every time the diagonal entries as 1 and 
compute the sub-diagonal entries. Here the choice with respect 
to the diagonal element is α2=1/xk;k=1,2,…,n. Then the off 
diagonal elements will be obviously α1=-1/xk-1;k=2,3,…,n. 
Accordingly with this choice we have settled for the matrix 
(1). But α1=1/xk-1; α2=-1/xk also will satisfy equation (10).  
Hence with respect to each of the n-1 rows, the entries can be 
filled in two ways and thus the result follows.  
 
The advantages we have with the factors (2) can be presented 
as follows. These factors can be easily constructed as in (2) 
from the entries of a given column. Notably the entries of the 
factors are simply the entries of the considered column. They 
preserve the TP structure of the given matrix. When EBD 
addresses entry by entry in a column for reducing them to 
zero, the matrix in (1) completes the reduction simultaneously.  
Obviously the operator transforms the given vector to a 

column of the identity matrix and so the computations are easy 
and convenient. As against this, EBD is provided by the 
multiple which has to be computed suitably to eliminate an 
entry. Thus from the infinite set of bidaigonal matrices of (10), 
an ideal matrix for factorization of a given TP matrix is 
presented. This will be further revealed with the specialty in 
the product of such factors of a given matrix and the procedure 
that derives these factors. 
 
Proposition 4. Given a non-zero n-vector x=[x1  x2  … xn]

T ; xi 
>0 and xi+1 ≥ xi, i=1,2,…,n and A=[aij] an nXn square matrix 
such that aij >0 for i,j=1,2,…,n, then the columns of B(x) -1A 
will be in ascending order.  
 
Proof: The (i,j)th entry of the product  B(x) -1A = [yij] is given 
by  
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Thus entries of columns of product B(x) -1A are determined as 
product of xi and sum of the first i entries or partial sums of the 
columns of A and so will be  in ascending order.  
 
Proposition 5. Given a non-zero n-vector x=[x1  x2  … xn]

T ; xi 
>0 ; i=1,2,…,n and A=[aij] an nXn square matrix such that aij 
>0 for i,j=1,2,…,n, then the column entries of B(x) -1A will 
satisfy 
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Proof: This is the immediate consequence that the entries yij of 
B(x) -1A are constituted by partial sums of the column entries 
of A as given in (11). Since the entries of A are positive and 
non-zeros, these partial sums will be in ascending order.  
 
These simple results explain the total positivity of a given 
matrix A with a new perception and give way to simple tests 
that determine the total positivity of it. 
 
Triangular Factors of a Given TP matrix 
   
Consider the matrices  
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From proposition (2), it follows that the lower triangular 
matrices Li ;i=1,2,…,n are totally positive if the entries of  
vectors xi ;  i=1,2,…, n are positive. These matrices can be 
derived as factors of a given non-singular nXn triangular 
matrix. These can also be derived as factors of the lower 
triangular component of a given non-singular nXn square 
matrix.  
 

Given a non-singular nXn lower triangular matrix L, we can 
derive the triangular factors Li, i=1,2,…,n of it as in  (13) in 
the following way.  

3324                                           International Journal of Development Research, Vol. 05, Issue, 02, pp. 3322-3328, February, 2015 



Consider the first column x1=[l11 l21 … ln1]
T. Then the first 

factor L1=B(x1)
-1 can be constructed directly using the entries 

of first column of L. Divide the entries of each row by the 
leading entries li1 ;i=1,2,…,n to obtain L2

’. With the matrix L2
’, 

subtract the entries of row j from corresponding entries of row 
j-1 ; j=n,n-1,….,2. The 2nd column of the resultant matrix L2

* 
can be used to obtain an n-vector as x2=[ 0 l22

* l32
* … ln2

*]T. 
Then the second factor is given by L2= I1+B (x2)

-1 and is an 
nXn matrix as in (13).  
 
Repeat the above procedure with entries of the 2nd column of 
L2

* to obtain L3
’ and L3

*. The 3rd column of L3
*
 then can be 

used to obtain an n-vector as     x3=[ 0 0 l33
* l43

* … ln3
*]T and it 

can  be used to obtain the third factor as L3= I2+B(x3)
-1 . 

Continuing in this fashion with the nth and final step, we can 
obtain xn=[ 0 0 0 … lnn

*]T and Ln= In-1+B(xn)
-1. Since the 

reductions are to the corresponding columns of the identity 
matrix, Ln

* will be the identity matrix. Proceeding in a similar 
way, we can derive the factors (13) of the lower triangular 
component, say L of a given nXn non-singular square matrix 
A. In this case U=Ln

* will be a unit upper triangular matrix. If 
we repeat the procedure with UT, its triangular factors can be 
obtained as Ui

T
 ; i=1,2,…,n. At each step-k, in matrix Lk

’, 
entries of kth column will be in ascending order. In Lk

* ratio of 
any two entries of kth column aik /amk ; k≤i<m≤n will be higher 
than that of the corresponding entries aij /amj  of any other 
column j ; k<j≤n. In L, if the entries of row i ; i=1,2,…,n are in 
descending order, the division lij /li1; j=1,2,…,n will result in 
normalizing these entries  at each step of the factorization. 
 
We have 
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Each of the factors Li ;i=1,2,…,n is obtained as unique 
solution to the linear systems  below. 
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Hence (14) and (15) are unique factorizations.  
 

Let det L[i,k :1,j] ; i < k , 1 <j ≤n denotes minor of size 2X2 
corresponding to the 2X2 submatrix which includes the rows i, 
k and columns 1,j of L. These are 2X2 minors that include the 
first column and this set obviously will also contain all 2X2 
contiguous or 2X2 initial minors. An initial minor is a 
contiguous minor that include the first column or row of A. In 
the background of propositions (4), (5) and the above 
procedure for deriving triangular factors (13), we shall 
introduce the following theorem. 
 

Theorem-1. The product L of the matrices Li;i=1,2,…,n in 
(13) is a lower triangular TP matrix if all the entries xk; 
k=1,2,…, n(n+1)/2 of the n factors are positive. 
 

Proof: It may be noted that by proposition (2), when the 
entries xk ;k=1,2,…, n(n+1)/2 are positive, all the n triangular 
matrices Li are TP matrices. So by the Cauchy-Binet identity 

from Fallat (2001), it follows that L is a lower triangular TP 
matrix. But in view of proposition (5) and the proposed 
factorization, we can independently prove that L=[lij] is a TP 
matrix. Clearly by proposition (5) as li1 / lk1 > lij /lkj it follows 
that det L[i,k :1,j] >0. Since the factors are with constant row 
entries, any minor of size 2X2 of L will be positive as the 
entries of jth column and  (j+1)th  column are obtained by 
multiplying the entries of the jth and (j+1)th factors respectively 
with the entries of previous factors. For example, the entry lij 
of L is obtained as below in (17) where li

(k) denotes the 
constant entry of ith row of kth  factor. 
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Firstly, consider product Ak

* of factors Lk, Lk+1,…., Ln. In Ak
*, 

kth column entries are entries of kth column of factor                    
Lk themselves. In next immediate matrix multiplication             
Ak-1

*=Lk-1Ak
*, kth column entries will be constituted by partial 

sums lk
(k)+lk+1

(k)+lk+2
(k) +…+li

(k) ; i=k,k+1,..,n. These entries 
will be linear sums and coefficients will be the constant entries 
of rows of factor Lk-1

 . In a similar way, at each of the matrix 
multiplications by factors Lk-2 , Lk-3., …, L1, linear and  partial 
sums of entries of kth column of current product matrix are 
considered as entries of kth column of resultant product matrix. 
Here coefficients of linear sums are those constant entries of 
factors Lk-2, Lk-3., …, L1. Thus entries of jth and (j+1)th columns 
of L are linear sums of the entries of  jth and (j+1)th factors 
respectively. As there are terms with common multiples which 
get cancelled, any minor det L[i,k :1,j] will be an expression 
involving the entries of factors Li, i=1,2,…,j and will be 
positive if the entries of the factors are so.  For example 
consider a typical minor  det L[i,i+1:1,2] as presented below 
in (18). 
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Now consider the row entries of L. A uniform scaling of row 
entries using the constant row entries of a factor Lk is applied 
when it is multiplied with the product of the factors in the 
order Lk+1 Lk+2… (Ln-1Ln)  
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Thus as far as the entries of a row i are concerned, a uniform 
positive scaling on its entries are applied in each matrix 
multiplication of (19).  Let lij

*(k+1) denote (i,j)th entry of the 
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. Now if we multiply this product with the 

factor Lk, with respect to the entries of a column j, partial sums 
of increasing order of the existing entries inside the brackets in 
(20) presented as below  
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are considered. In the resultant product matrix, the ratio of the 
leading entries lik

(k)/li+1,k
(k) will be greater than any other 
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corresponding ratio lij
*k/li+1,j

*k. We have seen that all the 
minors of size 2X2 in L are positive. So as we factorize, by 
dividing the entries of a row by its leading entry, a reverse 
order of positive uniform scaling is applied on these entries so 
that lik /li+1,k > lij /li+1,j is maintained in the resultant matrix at 
every step of the factorization. Hence when we subtract 
adjacent row entries, just as the 2X2 minors are positive in L, 
in the resultant matrix also, all its 2X2 minors will be positive. 
With respect to the given matrix L, these account for the 
positivity of its minors of next higher sizes. While subtracting 
row j+1 from row j so as to replace the entries of row j+1, the 
presence of strict increasing partial sums assure that all leading 
entries are indeed positive. Thus all minors of higher sizes of L 
are positive if all its 2X2 minors are so. So L is TP. In (15) 
consider the product of L with the factors Uk; k=1,2,…,n of 
matrix U all of which are with positive entries and column 
wise constant entries. Row entries of A will be constituted by 
partial sums of the row entries of L. Thus constant column 
entries of factors of U induce the ascending order of the row 
entries of A. 
 
Corollary-1. If the entries of L and minors det L[i,i+1: 1,j] 
;i=1,2,..,n-1; j=2,.3,…n and det L[i,i+1: j,j+1];i,j=1,2,..,n-1 
are non-zero positive, then L is TP. 
 
Proof: It is the product and quotient of these minors that are 
considered as the entries of the resultant matrix L2

* we obtain 
while factorizing L using its first column entries. Note that det 
L[i,i+1: 1,j] ;i=1,2,..,n-1; j=2,.3,…n are contiguous(initial 
minors) and non-contiguous minors of size 2X2 that include its 
first column. Also det L[i,i+1: j,j+1]; i,j=1,2,..,n-1 are 
contiguous minors of size 2X2 that include adjacent rows and 
columns in  L. Since we scale all the entries of any row 
uniformly at each phase of factorization, positivity of such 
2X2 minors will be maintained in L2

*. Thus the factorization 
process is able to create a cascading effect on the positivity of 
these 2X2 minors in each of the resultant matrices 
Li

*;i=1,2,..,n-1. That is positivity of 2X2 minors of Li
* account 

for the positivity of the minors of next higher sizes of   Li-1
*. 

This way if we consider backwards up to L, we see that its 
initial minors of all sizes are positive. So L can be factorized 
as in (13) where the entries of the factors will be all positive. 
Hence by theorem-1, L is TP. 
 
Corollary-2. If the entries of A and minors det A[i,i+1: 1,j] 
;i=1,2,..,n-1; j=2,.3,…n and det A[i,i+1:j,j+1];i,j=1,2,..,n-1 
are non-zero positive, then A is TP. 
 
Proof:  We have by (15) LU=A.  By corollary-1 and because 
of the proposed factorization, the lower triangular component 
L is TP. If we consider AT, all the infra diagonal 2X2 minors 
make UT a TP matrix by corollary -1 . So A will be TP by 
Cauchy-Binet identity. 
 
Because of (7), this factorization of A can be represented in a 
convenient way. Let dk(x) denotes a diagonal matrix with (n-k) 
entries as 1 followed by k non-zero entries and Bk(1) denotes 
the EB matrix with the only sub-diagonal entry 1 at its kth 
column. 
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Thus we can rewrite (15) as product of diagonal and bi-
diagonal matrices as follows. 
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            (21) 
 
Representation (21) is playing key role in cryptanalysis, 
especially binary coding of the key and text, see Udayakumar 
et al. (2007). The matrices di; i=1,2,…,n may be used as the 
weight vectors as in SS Hosseinian et al (2009). These 
diagonal matrices are basically projection matrices to the n-
components of the n-space, where each component vector dj ; 
j=2,3,…,n is obtained by zeroing the entries 1,2,…,j-1, for 
j=2,3,..,n and will be useful as discussed in the application of 
projection matrices in Shigang Liu et al. (2008). These may 
also be of use in constructing free-weighing matrices, see 
Guoquan Liu et al. (2011). This process can be generalized in 
the factorization procedure as in (22) below. 
 
U= (Ln … L2 L1)A            (22) 
 
Let 
 
L(i)= (Li … L2 L1)           (23) 
 
In computing L(i) in (23), of course there is the advantage 
because of the structure of  it. This can be described as 
follows. If A=[aij] , x=[x1 x2 … xn ] then matrix product L(x)A, 
saves n2 multiplications out of the total 2n2-n required for a 
general non-unit bidiagonal matrix. This is a direct 
consequence of the structure of L(x). Let L(x)A=B and B=[bij]. 
Each entry of B is computed as bij=(1/xi) ai,j –(1/xi-1)ai-1,j. So 
one need only multiply the entries ai1, ai2, … ain, of ith row of A 
with xi , the ith diagonal entry of L(x) for i=1,2,…,n. Now Li is 
a lower triangular matrix whose first i-1 rows and columns 
will be identical to that of the identity matrix. The matrix L(i) 
can be multiplied with (i+1)th column of A, [a1,i+1 a2, i+1 … an, 

i+1]
T =Aei+1 to generate, (i+1)th column [u1, i+1 u2, i+1 … un,i+1]T 

of U=[uij]. This then is helpful to avoid a considerable number 

of flops by replacing matrix-matrix multiplications 


n

1i

LA , 

with matrix-vector multiplications as 
 
L(i)A ei+1= L(i)[a1,i+1 a2,i+1 … an, i+1]

T=[u1, i+1 u2, i+1 … un, i+1]
T                          

                                                                                       (24) 
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Tests for Total Positivity of a given nXn matrix 
 

Test-1 
 

The factorization procedure itself can be conveniently used to 
test whether the given matrix A is TP or not. That is, first 
divide all the entries of each row by its leading entry. Check 
whether the entries of the second column are in ascending 
order. Subtract adjacent rows as row j from row j-1, for j=n,n-
1,…,2. Repeat the procedure now with rows 2,3,…n of the 
resultant matrix. Check whether entries of third row are in 
ascending order and so on. Thus if the n-i entries of the i+1th 
column of the resultant matrix Ai are in ascending order for 
i=1,2,…,n-1  all the factors will be TP matrices by 
proposition-2. Now proceed the test with UT=An

T to see that 
column entries of resultant matrices at each step are in 
ascending order. Then U will be TP and so by Cauchy-Binet 
identity, A will be TP.  
 
Test-2.  
 
In A=[aij] ; aij  >0 , i,j=1,2,…,n. Perform the following tests. 
ai1/ai+1,1>aij/ai+1,j  for i,j=1,2,…,n-1;  
aij/ai+1,j>ai,j+1/ai+1,,j+1  for i,j=1,2,…,n-1;  
Then we can see that by corollary-2, A is TP. 
 
Test-3.  
 
If nMA with all positive entries is given, we can always 

find permutation matrix P so that in the matrix AP, entries of 
the first column are in ascending order. Observe that in AP 
whether entries of all other columns are also in ascending 
order. Now do test-1 with AP. Likewise if the column entries 
are in ascending order at each of the 2n-steps, we see that by 
theorem-1, AP is a TP matrix. In this case column entries of 
the factors of components L and U of LU factorization of AP 

will be in ascending order.  
 

Computational cost 
 

In the article “On Factorization of Totally Positive Matrices” 
by Micchelli and Gasca (1996), states that if factors 
Li;i=1,2,..,n of a given non-singular TN matrix A are inverses 
of bidiagonal matrices, computational cost of such a process is 
low. This is applicable to the factorization process discussed 
here. This is what realized in (21). Number of operations 
involved with the matrix-vector multiplications in (24) is 

given by /6n1)/2k(k
n

1k

3


 . In computing the matrices L(i) 

in (23) also requires same number of computations. As far as 
the factorization of the upper triangular matrix U is concerned, 
only half the number of these computations is required. 
Additionally there is no requirement for computing multipliers 
and backward substitutions. This adds to the advantage of 
saving 2n(n+3/4) elementary operations. Considering these 
also, this procedure for determining whether A is TP is an n3/3 
process. This is a significant improvement compared to the 
n3/2 process discussed in Gasca and Pena (1992). 
 

Numerical illustration  
 

As an example to illustrate the procedure, a Hilbert matrix of 
order 3X3 is considered. It is a TP matrix, which is ill 

conditioned and incurable and recommended in Gibert Strang 
(1988). 
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In A1

’, 2nd column entries are in ascending order. In A2
* ratio 

of entries of 2nd column a22 /a32 will be higher than that of the 
corresponding entries a23 /a33 of the 3rd column. 
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Conclusions   
 
Factorization process introduced here is found to be closely 
associated with the structure of TP matrices. It effectively 
reveals interesting properties associated with TP matrices. 
Proposed procedure and factors are simple to handle. The 
uniform scaling of row entries in the procedure preserves the 
total positivity at every step. When the entries of factors are 
positive, their product matrix becomes totally positive, by 
considering partial sums of the column entries of these factors 
in its columns. As a result, ratio of any two entries xi1 :: xk1 ;      
1≤ i<k ≤n of first column will be higher than ratio of the 
corresponding entries xij :: xkj of any other column. This 
property is manifested at every step of taking the product of 
the factors and in the reverse operation of factorizing the 
product. Thus order property of the entries of the columns and 
rows of a TP matrix are naturally associated with these factors 
and factorization procedure. In this context, it may be noted 
that matrices correspondence tests using the procedure will be 
handy in exploring genetic relationships as discussed in Marie 
Noelle Ndjiondjop et al. (2006). The procedure comes out 
with a new test to confirm that a given matrix is TP. 
According to this test, if the 2X2 minors that include the first 
column and 2X2 minors that include adjacent columns and 
rows of the given matrix are positive then it is TP and involves 
n2/3 operations only compared to existing n2/2 operations. It 
can be concluded that proposed factors and procedure 
presented here are ideal choices for dealing with TP matrices. 
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