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ARTICLE INFO  ABSTRACT 
 
 

The present research paper aims to study the effect of soret and radiation effects on an MHD 
convective fluid flow embedded in a porous medium with heat source. Dimensional non-linear coupled 
differential equations transformed into dimensional less by introducing similarity variables Time-
dependent suction is assumed and the radiative flux is described using the differential approximation 
for radiation. The Galerkin finet element method is used to solve the equations governing flow. The 
flow phenomenon has been characterized with the help of flow parameters such as velocity, 
temperature and concentration profiles for different parameters such as. Schmidt number, Prandtl 
number, Magnetic field, Heat source, Permeability parameter, Thermal radiation, Chemical reaction, 
Modified Grashof number, Soret number, Eckert number and Grashof number. The velocity, 
temperature and concentration are shown graphically. The coefficient of skin-friction, Nusselt number 
and Sherwood number are shown in tables. 
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INTRODUCTION 
 
In recent years many researchers are showing interest to study the Soret and radiation effects on embedded in a porous medium with heat source 
with unsteady MHD free convective fluid flow.  The problem of fluid in an electromagnetic field has been studies for its importance in 
geophysics. Aerodynamic extrusion, metallurgy and other engineering process are used in petroleum engineering, chemical engineering, 
composite or ceramic engineering and heat dealing with heat flow and mass transfer over a vertical porous plate with variable suction, heat 
absorption. In the atmosphere, quasi – solid bodies, such as earth and so on heat and mass transfer phenomenon is observed. 
 
Absorbed the Unsteady free-convection interaction with thermal radiation in vertical porous plate, Magnetic field, with constant suction and 
constant heat flux, heat generation and thermal and etc. [1-4]. Boundary layer flows with Dofour and soret effects on   steady MHD combined 
free forced convective and mass transfer flow [5-7]. Numerical solutions of heat and mass transfer effects of an unsteady MHD free convective 
flow past an infinite vertical plate with constant suction [8]. convection heat transfers from an Isothermal vertical surface to a fluid saturated 
thermally satisfied porous medium [9-11]. studied about Unsteady MHD convective heat and mass transfer past a semi-infinite vertical 
permeable moving plate with heat absorption [12]. Effect of mass transfer on flow past impulsively started infinite vertical plate with a constant 
heat flux and chemical reaction [13-15]. MHD Oscillatory Flow on Free Convection-radiation through a Porous medium with constant suction 
velocity, in a fluid saturated porous medium with uniform surface heat flux, the nature of vertical natural convection flow resulting from the 
combined buoyancy effects of thermal and mass diffusion, Free convection flow with mass transfer [16-18]. Heat transfer, Thermal Radiation, 
viscous flow past an impulsively started semi-infinite horizontal plate, Effects of Hall current and heat transfer on rotating flow of a second 
grade fluid through a porous medium [19]. Numerical solution of differential equation, suction r injection, viscosity effects [20]. Chemical 
Reactions, Soret and dufour effects, stretching surface in porous medium, vertical plate with heat and mass transfer, Chemical reaction effects on 
vertical oscillating plate with variable temperature, Natural convection caused by immersing a hot surface in a fluid saturate porous medium at 
constant ambient temperature, Natural convection caused by immersing a hot surface in a fluid saturate porous medium at constant ambient 
temperature, heat transfer mechanisms, 
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In this paper, Unsteady MHD Free Convective Fluid Flow Embedded in a Porous Medium with Heat Source in the presence of Soret and 
Radiation Effects of uniform magnetic field applied normal to the flow has been studied. The process  is governed by the non-linear system of  
partial differential equations whose exact solutions are difficult to obtain, if possible. so, Galerkin finite element method has been adopted for its 
solution, which is more economical from computational point view. 
 
Mathematical Formulation 
 
Consider the problem of unsteady two-dimensional, laminar, boundary layer flow of a viscous, incompressible, electrically conducting fluid 
along a semi-infinite vertical plate in the presence of thermal and concentration buoyancy effects. In the normal flow time dependent suction is 

considered.  The 'x -axis is taken along the plate in the direction of the flow and 'y -axis normal to it. Further, due to the semi-infinite plane 

surface assumption the flow variables are the functions of normal distances 'y  and t   only. A uniform magnetic field is applied normal to the 
direction of the flow. Now, by Boussinesq’s approximation, the following governing equations of the flow process are:  
 
Continuity equation: 
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Momentum equation: 
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Energy Equation: 
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Concentration Equation: 
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The boundary conditions for the velocity, temperature and concentration fields are: 
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Where WT '  and WC'  Dimensional temperature and concentration respectively, WT ' and WC' are the free stream Dimensional temperature and 
concentration respectively. 

 
The radiative heat flux term by using the Rosseland approximation is given by  
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All the variables are defined in the nomenclature. It is assumed that the temperature differences within the flow are sufficiently small so that 
4T

can be expanded in a Taylor series about the free stream temperature T so that after rejecting higher order terms: 
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The energy equation after substitution of Equ (6) and (7) can now be written as 
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From Eq. (1) one can see that the suction is a function of time only. Hence, it is assumed to be in the following form: 
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Where A  is the suction parameter and 1A . Here OV is mean suction velocity, which is a non-zero positive constant and the minus sign 
indicates that the suction is towards the plate. It is now convenient to introduce the following dimensionless parameters: 
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On substituting of Eq. (9) into Eqs. (2), (4) and (7), the following governing equations are obtained in non-dimensional form: 
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where G  , mG
 , P ,  N  , CE , CS

, K , S K, M, and Q  are the thermal Grashof number,  Modified Grashof Number, Prandtl 
Number, Radiation parameter, Eckert number, Schmidt number,  Permiability parameter, Soret number, Chemical reaction parameter,Magnetic 
parameter  and Heat source parameter respectively. 
 
The corresponding boundary conditions are: 
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The mathematical formulation of the problem is now completed. Equations. (11) -(13) are coupled non-linear systems of partial differential 
equations, and are to be solved by using the initial and boundary conditions given in eq. (14). However, exact solutions are difficult if possible. 
Hence these equations are solved by Galerkin finite element method.  
 
Method of solution 

Applying the Galerkin finite element method for Equations. (11)  Over the element (e) 
)( kj yyy 

  is:  
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Integrating the first term in equation (15) by parts, one obtains 
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Neglecting the first term in equation (16) we gets 
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Let 
)()()( eee Nu   be the linear piecewise approximation solution over the element (e), 

)( kj yyy 
  where 
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Where dot denotes the differentiation with respect to t  . Assembling the element equations for two consecutive elements  ii yyy 1  and    

1 ii yyy
, following is obtained  
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Now put row corresponding to the node i to zero, from equation (17) the difference schemes is 
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Applying the Trapezoidal 
rule, following system of equations in   Crank-Nicholson method are obtained: 
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Applying similar procedure to equation (12) and (13) then we gets 
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y

-direction and time t  -direction respectively. Index i  refers to the space 

and j  refers to the time. In Equations (18)-(20), taking i  = 1(1) n and using initial and boundary conditions (14), the following system of 
equations are obtained: 
 

3)1(1 iBXA iii                                                                                                                            …………………………….(21)     
 

Where iA’s are matrices of order n and ii BX , ’s column matrices having n  components. The solutions of above system of equations are 
obtained by using Thomas algorithm for velocity, temperature and concentration. Also, numerical solutions for these equations are obtained by 
C-program. In order to prove the convergence and stability of finite element method, the same C-program was run with slightly changed values 

of h and k and no significant change was observed in the values of ,u and  . Hence, the finite element method is stable and convergent. 
 
Skin friction: The skin-friction, Nusselt number and Sherwood number are important physical parameters for this type of boundary layer flow. 
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The skin friction, rate of heat and mass transfer are 

Skin friction coefficient ( fC
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Nusselt number ( Nu) at the plate is         0
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Sherwood number ( Sh) at the plate is     0
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RESULTS AND DISCUSSION 
 
The formulation of the problem that accounts for the effects of the Soret and Radiation  reaction on an unsteady MHD flow past a semi-infinite 
vertical porous plate with Heat source is performed in the preceding sections. The governing equations of the flow field are solved analytically 
by using a finite element method. The expressions for the velocity, temperature, concentration, skin-friction, Nusselt number, and Sherwood 
number are obtained. To get a physical perception of the problem, the above physical quantities are computed numerically for different values of 

the governing parameters, viz., the Grashof thermal number G , the Modified Grashof number mG , the magnetic parameter M  ,the thermal 

radiation the permeability parameter K , the Prandtl number P , the heat source parameter Q , the Eckert number CE , the Schmidt number 

CS , the chemical reaction parameter K , the soret numder  OS  . Here we fixed 0.1,5.0,02.0  tn  
 

The effects of various governing parameters on the skin friction coefficient fC
, Nusselt number Nu  and the Sherwood number Sh are shown 

in Tables 1, 2 and 3. From Table 1, it is noticed that as G or mG  increases, the skin friction coefficient increases. It is obvious that as Mor K  

increases, the skin friction coefficient decreases. From Table 2, it is observed that an increase in the  Q  or the P Prandtl snumber reduces the 

skin friction and increases the Nusselt number. Also, it is found that as  Ecand Nr  increases the skin friction increases and the Nusselt 

number increases. From Table 3, it is found that as CS  or K   increases, the skin friction coefficient decreases and the Sherwood number 

decreases. Also, it is found that as So increases the skin friction increases and the Sherwood number increases. 
 

Table 1.  Effect of G  , mG , M and K  on fC
    ( N =0.5, Q =1.0, Pr=0.71, Ec=0.001, Sc=0.22, So=1.0, K =0.5) 

 
 
 
 

 
 
 
 
 

Table 2:  Effect of Q , Pr N  and Ec  on  fC
 and Nu ( G =5.0, mG =5.0, M=0.5, K =1.0, Sc=0.22, So=1.0, K =0.5) 

 

Q  Pr N  
Ec fC

 Nu  
1.0 
2.0 
1.0 
1.0 
1.0 

     0.71 
0.71 
7.0 
0.71 
0.71 

0.5 
0.5 
0.5 
1.0 
0.5 

0.001 
0.001 
0.001 
0.001 
0.01 

3.7681 
3.1542 
2.8564 
4.2654 
3.8916 

1.6513 
1.5324 
1.1258 
2.5413 
1.8645 

 

Table 3:  Effect of Sc , So and K   on  fC
 and Sh  ( G =5.0, mG =5.0, M=0.5, K =1.0, Q =1.0, Pr=0.71, N =0.5, Ec=0.001) 

 

Sc  So K  fC
 Sh  

0.22 
0.60 
0.22 
0.22 

1.0 
1.0 
2.0 
1.0 

0.5 
0.5 
0.5 
1.0 

3.7681 
3.2132 
3.9245 
3.1542 

1.4256 
1.2546 
1.6524 
1.0984 

 
Figs 1(a) and 1(b) illustrate the velocity and temperature profiles for different values of Heat source parameter  Q  , the numerical results show 
that the effect of increasing values of heat source parameter result in a decreasing velocity and temperature. 

Figs 2(a) and 2(b) illustrates the behavior Velocity and Temperature for different values of Thermal radiation parameter   N . It is observed 

that an increase in N  contributes to increase in both the values of velocity and Temperature. 

The influence of the thermal Grashof number G  on the velocity is presented in figure .3. Increase in the Grashof number G  contributes to the 
increase in velocity when all other parameter that appears in the velocity field are held constant The influence of the solutel Grashof number Gm 
on the velocity is presented in figure.4.It is observed that, while all other parameters are held constant and velocity increases with an increase in 

G  mG
 M 

K  fC
 

5.0 
10.0 
5.0 
5.0 
5.0 

5.0 
5.0 
10.0 
5.0 
5.0 

0.5 
0.5 
0.5 
1.0 
0.5 

1.0 
1.0 
1.0 
1.0 
2.0 

3.7681 
4.9583 
4.2746 
2.3275 
2.9958 



solute Grashof number mG . Figs 5(a) and 5(b) illustrate the velocity and temperature profiles for different values of the Prandtl number P . The 
Prandtl number defines the ratio of momentum diffusivity to thermal diffusivity. The numerical results show that the effect of increasing values 
of Prandtl number results in a decreasing velocity (Fig 5(a)). From Fig 5 (b), it is observed that an increase in the Prandtl number results a 
decrease of the thermal boundary layer thickness and in general lower average temperature within the boundary layer. 
The velocity and temperature profiles are shown in Figs 6(a) and 6(b) for different values of Eckert number   CE . An increase in Eckert number 

CE  leads to increase in both velocity and temperature. For various values of the magnetic parameter M  , the velocity profiles are plotted in Fig 7. 
It can be seen that as M increases, the velocity decreases. This result qualitatively agrees with the expectations, since the magnetic field exerts a 
retarding force on the flow. 
 
The effect of the permeability parameter K  on the velocity field is shown in Fig 8. An increase   in   the   resistance of the porous medium which 
will tend to increase the velocity. Thipps behavior is evident from Fig 8. Figs 9(a) and 9(b) respectively. The Schmidt number embodies the ratio 
of the momentum to the mass diffusivity. The Schmidt number CS  therefore quantifies the relative effectiveness of momentum and mass transport 

by diffusion in the hydrodynamic (velocity) and concentration (species) boundary layers. As the Schmidt number CS increases the concentration 
decreases. This causes the concentration buoyancy effects to decrease yielding a reduction in the fluid velocity. The reductions in the velocity 
and concentration profiles are accompanied by simultaneous reductions in the velocity and concentration boundary layers. These behaviors are 
clear from Figs 9(a) and 9(b). 
Fig 10(a) depict the velocity profiles for different values of the Soret number OS . The Soret number  defines the effect of the temperature gradients 

inducing significant mass diffusion effects. It is noticed that velocity profile for ,5.0,0.1,5,5.0   NKGGK m

.71.0,22.0  PS c  are compared with the available solution of Mohamed [60] in Fig 10(a). It observed that the present results are in 
good agreement with that of Mohamed. Fig 10(b) depicts the concentration profiles for different values of the Soret number OS  It is noticed that 
an increase in the Soret number results in an decrease concentration within the boundary layer.  Figs 11(a) and 11(b) illustrates the behavior 
velocity and concentration for different values of chemical reaction parameter  K  . It is observed that an increase in leads to a decrease in both 
the values of velocity and concentration. 
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Fig.1(a). Effets of   Heat source Q  on the Velocityprofile Fig.1 (b). Effets of   Heat source Q   on the Temperature profile 

  
 

Fig.2(a) Effets of Thermal radiation  N  on the Velocity profile Fig.2(b) Effets of  Thermal radiation N  on the Temperature 
profile 

  
 

Fig. 3. Effects of Grashof number G  on Velocity profile 
Fig. 4. Effects of solutel Grashof number mG   on Velocity profile. 
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Fig.5(a). Effects of  Prandtl number P  on  Velocity profile Fig. 5(b). Effets of  Prandtl number P  on  the Temperature profile 

  
 

Fig. 6(a). Effets of  Eckert number  CE   on  the Velocity profile                                                
 Fig.6(b) Effets of  Eckert number CE  on  the Temperature profile                                                  

 
 

 

 

Fig.7. Effets of Magnetic parameter M  on Velocity profile Fig. 8. Effects of Permeability parameter K  on Velocity profile 

 
 

 
 

Fig. 9(a) Effets of Schmidt number CS  on the Velocity profile 
Fig.9(b) Effets of Schmidt number CS  on the Concentration 

profile 

 
 

 
Fig.10(a) Effets of oret number  OS  on the velocity profile 

Fig. 10(b). Effets of Soret number  OS  on Concentration profile 
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Fig.11(a).Effets of Chemical reaction K  on velocity profile 
 

Fig.11(b). Effets of Chemical reaction K  on the Concentration 
profile 

 

CONCLUSIONS 
 
The problem of two-dimensional fluid in the prances of thermal and concentration buoyancy effects under the influence of uniform magnetic 
field applied normal to the flow is formulated and solved numerically. A Galerkin finite element method is adopted to solve the equations 
governing the flow. The results illustrate the flow characteristics for the velocity, temperature, concentration, skin-friction, Nusselt number, and 
Sherwood number. The conclusions of the study are as follows: 
 
 The velocity increases with the increase Thermal Grashof number and Modified Grashof number. 
 The velocity decreases with an increase in the Magnetic parameter. 
 The velocity increases with an increase in the Permeability of the porous medium    
 parameter. 
 Increasing the Prandtl number substantially decreases the translational velocity and the 
 temperature function. 
 Increasing the Heat source parameter decrease both velocity and temperature. 
 the velocity as well as temperature increases with an decrease in the Thermal radiation   
 parameter. 
 The velocity as well as concentration decreases with an increase in the Schmidt number. 
 An Increase in the Soret number leads to decrease in the velocity and temperature. 
 An increase in the Eckert number leads to increase in the velocity and temperature. 
 The velocity as well as concentration decreases with an increase in the Chemical reaction parameter.   
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