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ARTICLE INFO  ABSTRACT 
 
 

This study aimed to develop and evaluate an algorithm for enriching the thermodilution signal. The method 
proposed presents an improvement of previous works in the literature in terms of precision, convergence and 
computational effort. The algorithm proposed is a deconvolution method that works without the need for 
precise knowledge of the transfer function of the temperature sensor in the Swan-Ganz catheter. In this 
method, the prior knowledge of the nature of the sensor response and a specific characteristic of the actual 
thermodilution signal is used, to estimate the response of the sensor, and then to determine a better estimate 
for the actual signal. 
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INTRODUCTION 
 

The heart and the vascular bed form a system for distribution 
of gas and nutrients, and extraction of carbon dioxide and 
metabolites generated by the human metabolism, helping 
several defense systems and aiding in the distribution of 
leukocytes and substances related to blood coagulation [1]. 
Due to its great importance, there are many devices for 
assessing the condition of the cardiovascular system. The 
primary goal of this work is the development of an algorithm 
to improve the quality of temperature measurement by the 
Swan-Ganz catheter sensor, using a technique called 
deconvolution. The thermodilution method allows for the 
measurement of several hemodynamic parameters in patients 
with cardiovascular diseases. Determining cardiac output and 
ejection fraction can help predict many diseases, including 
estimating the risk of sudden death (ejection fraction <0.2), 
which is becoming more common. In the operation of the 
human heart, the left or right ventricle of the heart is filled 
with blood during the diastole. After the ventricle is filled, the 
contraction (or systole) begins, and a fraction of the blood is 
ejected to the lungs and to the peripheral circulation. The 
ejection fraction is the ratio between the volume of blood that 
is ejected and the maximum volume of blood when the  
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ventricle was full (at the end of the diastole). The cardiac 
output is the volume (usually in L/min) of blood pumped by 
the heart in one minute.  The thermodilution curve is 
illustrated in Fig. 1. Two curves are shown in the picture, and 
both represent the difference between the blood temperature 
during the thermodilution process and the normal blood 
temperature. The stepwise curve shown in the figure shows an 
idealized approximation of the thermodilution curve, for an 
ejection fraction of 0.5 (i.e., in each cycle, the heart pumps half 
of the blood volume that was in the ventricle in the end of the 
diastole). The curve has a stepwise behaviour because of the 
nature of the thermodilution signal. In the measurement 
process, a bolus of saline, at a temperature that is higher of 
lower from the blood temperature, is injected into the right 
atrium or into the right ventricle and mixes with the blood in 
the ventricle, causing its temperature to increase or to 
decrease. Then, the ventricular contraction happens, expelling 
half of the blood to the pulmonary artery, where the blood 
temperature is measured by the thermistor. Then, the 
contractions end, and the ventricle starts to fill again. Since the 
ejection fraction is 0.5, the temperature of the mixture falls to 
half of its previous value. As the next contractions happen, in 
each contraction the temperature will fall to half its previous 
value. Thus the ideal thermodilution curve is composed by a 
series of plateaux. Suppose that the temperature of one of these 
plateaux is Tn, and the temperature in the plateau before this 
contraction is Tn-1. Then, it is easy to show, using 
thermodynamics [2], that the ejection fraction can be estimated 
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by EF=1-Tn/Tn-1. Moreover, it is easy to show [2] that the 
cardiac output is approximately equal to a constant divided by 
the area under this curve. The second curve shown in Fig. 1 is 
the temperature that is measured by the thermistor probe 
embedded in the thermodilution catheter.  This curve is a 
smeared version of the actual temperature curve, since the 
catheter has to be embedded into the catheter, and, because of 
that, it has a high thermal inertia, which causes the effect of a 
low pass filter. This distortion does not affect the measurement 
of the cardiac output, since the filtered curve keeps the same 
area as the undistorted curve. However, since the plateaus 
disappear, it is not possible to estimate the ejection fraction. G. 
N. Stewart articulated basic principles of the thermodilution 
method [3], attesting that if a substance were introduced at a 
constant rate into the bloodstream, it would be mixed with the 
blood, and if its concentration was measured at a point a little 
distant from the injection site, its decay rate would be 
inversely proportional to the rate of blood flow. A Swan-Ganz 
catheter is inserted into the human body through a peripheral 
vein and advanced to the right side of the heart, traversing the 
right atrium and right ventricle until it finally reaches the 
pulmonary artery. 
 

 
 

Fig. 1. Simulated Thermodilution curves – the idealized curve is 
modelled as a sequence of plateaus, and the measured curve can 
be approximated by the convolution of the idealized curve with 

the impulse response of a catheter that is approximated by a sum 
of real negative explonentials 

 
The algorithm developed in this work can be implemented by 
the following sequence: 
 

1. Acquisition of the thermodilution signal and the 
electrocardiogram. 

2. Definition of the limits of the plateaus of the 
thermodilution curve by means of electrocardiogram R 
waves detection (the borders of the plateaus match with 
the instants of occurrence of R waves). 

3. Assume an initial hypothesis for the values of the 
coefficients a, B, b, C, c, D and d. Using more realistic 
values makes the algorithm a little faster, but it is not a 
necessary condition. 

4. Determine, from the borders, the midpoints of each 
plateau. 

5. Calculate the position, in the vector, of the extreme and 
average points in each plateau of Figure 1 in the ideal 
curve is shown as a plateaus confluence. 

6. Start of the iterative process, i.e. a loop of repetition for 
the approximation sequence. 

7. Calculation of the impulse response of the catheter with 
four exponential components. 

8. Performe the deconvolution of the signal using the 
current estimates of a, B, b, C, c, D, and d. 

9. Calculation of the error function (which quantifies how 
close the sum of the absolute values of the inclinations 
of the portions of the final half of the first four plateaus 
is near zero). 

10. For each separate coefficient, use a "delta" of 0.05, to 
determine the direction of the gradient in the downward 
direction on the surface. 

11. Update of the new parameter estimates, in the 
decreasing direction of the gradient. 

12. If the current error is less than 0.001, stop, and go to 
step 14. 

13. Return to step 7. 
14. Do the final deconvolution, showing the resulting 

graph. 
15. Calculate the ejection fraction based on the final result 

of the deconvolution. 
 
The error function, used in the iterative process, is given by the 
following relation, 
 

_ _

_ _ _
_
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where error_plateau is the error between the actual and 
deconvolved temperature and T_dec_aprox (C) is the 
temperature signal obtained with the deconvolution of the 
signal using the approximate response with four exponentials. 
In step 8, the degree of deconvolution must be controlled 
according to the signal-to-noise ratio of the temperature signal 
captured by the slow sensor. Typically, the degree of 
deconvolution is limited by a low-pass filter IIR (Infinite 
Impulse Response) of order 2 and cutoff frequency of 10 Hz. 
As discussed in [4], if the noise level is very high, the cutoff 
frequency must be decreased until reaching an acceptable 
noise level. In step 15, the ejection fraction was calculated, in 
the simulations performed, by two different methods. In the 
first, the ejection fraction is estimated by the equation EF = 1-
Tn / Tn-1, where Tn and Tn-1 are two successive plateaus. For 
the calculation, the first three successive pairs of plateaus are 
used which occur immediately after the peak of the 
thermodilution wave, and, after calculation, the means of the 
three calculations are calculated. The process of calculating the 
mean decreases the natural variability between successive 
beats. Also, there is always a small error associated with the 
first pair of plateaus, since the first plateau may in some cases 
still contain a small amount of the original injectate, so that the 
exponential decay phase may not yet have been effectively 
initiated. Averages also decrease this error. A flow diagram for 
this algorithm is shown in Figure 2. 
 
Deconvolution of signals: Convolution is a mathematical way 
of combining two signals to form a third signal. It is the most 
important mathematical operation in digital signal processing. 
Using the strategy of superposition of impulse functions, 
systems can be described by a mathematical expression. 
Convolution is important because it relates the three signals of 
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interest [5, 6]. The deconvolution is the inverse of the 
convolution operation. In a commonly used approach to 
perform this operation, the input signal is obtained through a 
mathematical solution involving the Fourier transform of the 
input and output signals. This section describes the method 
used in this work.   The output of a linear time-invariant (LTI) 
system can be represented as the convolution of an input signal 
with the impulse response of the system, as shown in equation 
(2), in the time domain. 
 

     *measured realT t h t T t
                                         (2)  

 
where Tmeasured(t) is the temperature signal measured by the 
thermistor probe (with a low pass effect) in the time domain, 
h(t) is the impulse response of the sensor, and Treal(t) is the 
undistorted temperature being measured. The asterisk 
represents the convolution operation. In the frequency domain, 
Eq. (2) becomes a point by point multiplication, as shown in 
Eq. (3). 
 

     .measured realT j H j T j  
                                 (3)    

 

In Eq. (3), Tmeasured(jω) is the Fourier Transform (FT) of the 
measured signal, H(jω) is the FT of the sensor impulse 
response, and Treal(jω) is the FT of the temperature being 
measured. In this work, the FFT is approximated by the Fast 
Fourier Transform (FFT).  The deconvolution [7, 8, 9] can be 
obtained by using the FFT of the impulse response of the 
system and the FFT of the measured signal. Equations (2) and 
(3) indicate that the temperature measured by the sensor 
corresponds to the convolution between the actual temperature 
and the impulse response of the sensor. The point by point 
division of the FFT of the signal measured by the FFT of the 
impulse response of the system is, in the idealized case, the 
basis of the deconvolution method proposed in this paper 
[10,11].  The deconvolution process is illustrated in Fig. 3. In 
the figure, T(jω) is the FFT of the real temperature, Tmeas(jω) is 
the FFT of the measured temperature, and N(jω) is the noise 
that is added due to interference, electronic noise and 
imprecision in the approximation for H(jω). The sensor 
transforms the input T(jω) into H(jω)T(jω) plus the added 
noise. To perform the deconvolution, the measured signal is 
divided by H(jω). The result is the recovered signal, Tmeas(jω), 
plus the noise divided by H(jω) (or equivalently, multiplied by 
an inverse filter, Hinv(jω)=1/ H(jω). Since H(jω) has an 
increasingly low amplitude as frequency increases, the high 
frequency components of the noise are greatly increased, 
generating an amount of noise that can render the Tmeas(jω) 
useless. Thus, a last stage with a third order low-pass filter is 
used to attenuate this noise component.    
 
In the proposed method, the digitized versions of the actual 
and the measured temperatures, which will be called, from 
now, x(t) and y(t), and the impulse response of the temperature 
sensors (h(t)) are used, and they are named x[n], y[n] and h[n]. 
For discrete systems that are LTI, the convolution operation 
can be expressed by equation (4), 







1

0

N

m
mmnn xhy ,                                          (4)  

 

where n and m are digital versions of the time variable, xn is 
the digital version of the actual temperature being measured 

(which is not known yet and must be estimated by a 
deconvolution operation), hn is the digital version of the  
impulse response of the system, and y[n] is the digital version 
of the output signal. N is the length of these three signals. 
 

Eq. (4) can be re-written using matrix notation, as shown in 
Equation (5). 
 
    xhy                                                                             (5) 
 

Where [y] is the system output vector, [h] is the Toeplitz 
matrix representing the discrete convolution and [x] is the 
discrete input vector. 
 

 
 

Fig. 2. Flow chart describing the Algorithm proposed in this work. The 
doal of the algorithm is to minimized an error function, which is defined 

by the sum of hte absolute values of the deconvolved curve. The 
convoution processe follows the steps presented in the chart 

 

In this case, M = N, and the exact expression is shown in 
Equation (6). The proposed deconvolution method is shown in 
Fig. 3. 
 

 
Fig. 3: Block diagram illustrating the basic building blocks of 
the proposed deconvolution method, using frequency domain 

Acquisition of the thermodilution signal and the 
electrocardiogram.

Definition of the limits of the plateaus of the thermodilution 
curve by means of electrocardiogram R waves detection (the 
borders of the plateaus match with the instants of occurrence 
of R waves).

Assume an initial hypothesis for the values of the coefficients 
a, B, b, C, c, D and d. Using more realistic values makes the 
algorithm a little faster, but it is not a necessary condition.

Determine, from the borders, the midpoints of each plateau.

Calculate the position, in the vector, of the extreme and 
average points in each plateau of Figure 1 in the ideal curve  
shown as a plateaus confluence.

Start of the iterative process, ie a loop of repetition for the 
approximation sequence.

Calculation of the impulse response of the catheter with four 
exponential components.

Deconvolution of the signal using the current estimates of a, 
B, b, C, c, D, and d.

Calculation of the error function (which quantifies how close 
the sum of the absolute values of the inclinations of the 
portions of the final half of the first four plateaus is near zero).

For each separate coefficient, use a "delta" of 0.05, to 
determine the direction of the gradient in the downward 
direction on the surface.

Update of the new parameter estimates, in the decreasing 
direction of the gradient.

Return to step 7.

Do the final deconvolution, showing the resulting graph.

Calculate the ejection fraction based 
on the final result of the deconvolution.

If the current error is less than 
0.001, stop, and go to step 14.

No

Yes
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notation. T(jω) is the FFT of the real temperature, Tmeas(jω) is 
the FFT of the measured temperature, and N(jω) is the noise 
that is added due to interference, electronic noise and 
imprecision in the approximation for H(jω). The sensor 
transforms the input T(jω) into H(jω)T(jω) plus the added 
noise. To perform the deconvolution, the measured signal is 
divided by H(jω). The result is the recovered signal, Tmeas(jω), 
plus the noise divided by H(jω). Since H(jω) has an 
increasingly low amplitude as frequency increases, the high 
frequency components of the noise are greatly increased, 
generating an amount of noise that can render the Tmeas(jω) 
estimate useless. Thus, a last stage with a low-pass filter is 
used to attenuate this noise component. 
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The problem of deconvolution can be seen as finding the 
inverse solution of the linear system proposed by equation (5). 
Thus, to perform the deconvolution it is necessary to find the 
vector x such that, 
 

     yhx 1
                              (7) 

 

Where  [h]-1 is the inverse Toeplitz matrix. 
 

In matrix notation, the FFT of a digital signal can be calculated 
by multiplying the matrix W, shown in Equation (8) by the 
digitized signal. 
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where 

2π
-j

NW=e . By multiplying both sides of Eq. (5) by the W 
matrix, we obtain Eq. (9), 
 

      
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XHYxWWhWyW

xhWyW






  ................(9) 

 

where the W-1 matrix is the complex conjugate matrix of W. It 
is not difficult to show that [W].[h].[W]-1 is a diagonal matrix. 
Therefore, in the frequency domain, Eq. (10) must be solved: 
 

   YHX
r

r . ,                          (10) 

 

where [H]r is a diagonal matrix whose elements are the 
reciprocals of the corresponding elements of the [H] matrix. 
An advantage of using the DFT is to avoid a matrix inversion 
operation that it is often slow in the time domain, using a more 
efficient algorithm in the frequency domain. After calculating 

the recovered signal in the frequency domain [Xr (jw)] the 
recovered signal in the time domain [xr(t)] can be obtained by 
calculating its inverse Fourier transform (in this case, this 
function can be approximated by the inverse Fast Fourier 
Transform (IFFT) of the FFT of the recovered signal). The 
result that is obtained is always noisy, and it needs to be 
filtered. In the proposed method, the filter used is a digital 3rd 
order Butterworth IIR filter, whose cutoff frequency is 
optimized through an iterative process.   The proposed system 
can be modelled by a temperature sensor based on a thermistor 
whose impulse response can be approximated by a sum of one 
or more exponential signals. The process will now be 
illustrated using the h[n] function in equation (11). 
 

  nnn eenh 843 532                                               (11) 
 

The plot corresponding to h[n] is shown in Fig. 4, for a 10 
seconds period, using a sampling period of 0.1 s (sampling 
frequency of 10 Hz). A unit step function, u(n-50), is shown in 
Fig. 5 (b). The convolution of the discrete signals of Figs. 4 
and 5(b) is shown in Fig. 5(a). By applying these equations, 
using the Toeplitz matrix, the convolution has been calculated 
and it is shown in Fig. 5 (a), which corresponds to the step 
response of the thermistor.   In practice, intrinsic noise is very 
common in instrumentation systems, due to several physical 
effects. To simulate this situation, Gaussian noise is added to 
the output y[n], as illustrated at the top of Fig. 6(a). The noise 
has zero mean and standard deviation equals to zero [11]. The 
deconvolution process described by Equations (9) and (10), 
and by using the Butterworth filter is illustrated in Figure 6(b). 
It is clearly seen that a small amount of noise can distort the 
deconvolution operation. A more realistic model for the 
response of a thermistor probe embedded in a catheter can be 
obtained by an approximation using three exponential 
components, as shown in Equation (11) [2, 8, 11, 12, 13, 14, 
15] and applied in this paper:  
 

   . .at bt cth t K e Be Ce    
,                                      (11) 

 

where h(t) is the impulse response, a, B, b, C, c are parameters 
obtained in the characterization of the sensor, and K is a 
constant that is set such that the area under h(t) is equal to 1, 
which is: 
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Fig. 4. Impulse response to the system under analysis. For the 
system under analysis in this section, we assume a response that is 

a sum of exponential components 
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Fig. 6(a) shows an example of a measured step response with a 
small amount of noise added. The deconvolution process was 
applied, and the result is shown in Fig. 6 (b). It is possible to 
see, in Fig. 6, that when a small amount of noise is added to 
the measured signal, the deconvolved signal can get noisy. In 
this example, the amount of noise in the deconvolved noise is 
not too high, but, for higher noise levels it can get very high, 
making the result unreadable. In this case, the cut-off 
frequency of the filtering process must be decreased, and there 
will be a trade-off between the amount of noise and the quality 
of the recovered signal. 
 

 
 

(a) 
 

 
 

(b) 
 

Fig. 5. Convolution (upper curve) and deconvolution (lower 
curve) for the system under analysis. The convolution (y [n] = h 
[n] * x [n]) for the system under discussion is shown in the upper 
curve, and the deconvolution is shown in the lower part of the 
curve. Note that, if there is no noise, the deconvolution is accurate 
 

 
 

(a) 
 

 
 

(b) 
 

Fig. 6. Sensor output resulting from the measurement of the 
temperature shown in Fig. 6 is shown in (a). The result of the 

deconvolution operation is shown in Fig. 6 (b) 

A small amount of noise can greatly distort the deconvoluted 
signal. The result for a slightly higher noise in y [n] is shown 
in Figure 6 (b). It is seen from the figure that the deconvolved 
time signal presents noticeable distortion.   The deconvolution 
process described is the main part of the process that is 
proposed in this paper for deconvolution of the thermodilution 
curve. The other part is described as follows. There is one 
characteristic that is observed in the true temperature signal 
x(t): during the decaying period, the curve has plateaux, and 
the slopes of these plateaux are close to zero. Thus, the 
algorithm for estimation of h(t) and for deconvolution of the 
thermodilution curve works as follows: (i) an initial estimate 
of the six parameters (a, B, b, C, c, and the cut-off frequency 
of the third order Butterworth filter), of h(t) is chosen; (ii) 
perform the deconvolution operation, obtaining a deconvolved 
curve; (iii) estimate the curve slope at the center of the three 
first plateaux in the descending curve, and add their values, 
obtained the sum of the slopes, SS (the goal is to minimize this 
values); (iv) run 5 new convolution operations, by changing, in 
each one, only one of the five parameters, and, using the 
values of the obtained SS values to estimate the direction of 
the descending gradient; (v) based on the gradient direction, 
change the six parameters slightly, calculating the new value 
of SS; (vi) if the new value is smaller than a chosen value, stop 
the search, and go to step (vii), if not, go back to step (ii); (vii) 
using the final parameters, perform the final deconvolution 
operation, and calculate the ejection fraction and the end 
diastolic volume. In order to test the effectiveness of the 
method, we performed mathematical simulations, and tests 
with Swann-Ganz catheters installed in the mock circulatory 
system described in [2]. The acquisition system shown in Fig. 
7 has been developed to allow the measurement and 
processing of the thermodilution signal measured with Swann-
Ganz catheters. 
 

 
 

Fig. 7. Data acquisition system to obtain the thermodilution curves 
 

RESULTS 
 
Several mathematical simulations were performed in the 
Matlab environment in order to assess the effectiveness of the 
method. Fig. 8 shows the results of simulations in which the 
actual ejection fraction ranged from 0.1 up to 0.9, with 
intervals of 0.1, and the heart rate ranging from 10 up to 290 
beats per minute (BPM), with intervals of 10 bpm. The 
standard deviation of the Gaussian noise added to the signal, in 
the simulation was 0.02 oC. The computer simulations showed 
the limits of the proposed algorithms: the algorithm is not 
satisfactory operation for heart rates above 200 and ejection 
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fractions above 0.8. There are two reasons for the failure of the 
algorithm for high heart rates and higher ejection fractions.  
 

 
 

Fig. 8. Results of the computational simulation. The actual 
ejection fraction ranged from 0.1 up to 0.9, with intervals of 0.1, 
and the heart rate ranging from 10 up to 290 beats per minute 
(BPM), with intervals of 10 bpm. The standard deviation of the 

Gaussian noise added to the signal, in the simulation was 0.02 oC 
 

The first reason is that, for high ejection fractions, the fall after 
each plateaux is too abrupt, and at the first stroke, the curve 
drops to 10% of its value, and second, to 1%. Thus, the 
algorithm does not have the number of reference points 
required for deconvolution. It is important to note, however, 
that even the expensive systems with very fast sensors allow 
the measurement of ejection fractions only up to 0.7. The 
reasons for this limitation are as follows: the first plateau has a 
fall to just over 30%, the second to 9%, 3% the third and 
fourth 1%. In the first pair, which is the most accurate, the 
accuracy is impaired by the fact that immediately after the start 
of decay, there are still remaining mixture injection. The 
second and third pairs are inaccurate due to its small 
amplitude. Thus, this limitation is not only for the system with 
deconvolution, but also with the system with a fast sensor. 
Another reason for the error is that, for heart rates above 150, 
the limits of the plateaus are very close together, and the 
algorithm does not have strong points of reference to calculate 
the plateau slope at the centre of the plateau, and this 
shortcoming impairs the effectiveness of the algorithm. This is 
a fundamental limitation of the algorithm herein propose that, 
perhaps, may be resolved in future developments. A possible 
future development is the adaptation of this deconvolution 
algorithm to the continuous measurement systems, which use 
resistive heating of the blood (Yelderman, 2004). The 
simulations using the Swann-Ganz catheter in the mock 
circulatory system were performed by acquiring both the 
temperatures measured by the slow sensor embedded in the 
catheter and a very fast sensor specially built for this purpose. 
Then, the ejection fraction was calculated by using both 
curves. The results comparing these two measurements are 
presented in Table 1.The table have shown that the 
measurements made with the enhanced signal from the 
thermodilution catheter had a mean error of  8.90%, where 
bpm is beats per minute and EF is the ejection fraction.      
This level of errors in both the simulations and the 
measurements had about the same magnitude as the errors in 
previous works [2][8][9]. However, the processing time 

required for the experiments were much lower for the 
algorithm herein presented.  
 
Table 1. Results comparing the measurements of ejection fraction 

by a fast sensor and the signal from a slow sensor that was 
enhanced by the deconvolution method 

 

Cardiac rate 
(bpm) 

EF with the 
fast sensor 

EF with the 
algorithm 

Error (%) 

22.5 0.28 0.31 10.7% 
25.2 0.26 0.29 11.5% 
21.88 0.20 0.21 4.5% 
27.87 0.46 0.50 6.7% 
32.83 0.34 0.32 6.9% 
31.35 0.19 0.21 10.0% 
38.92 0.32 0.36 12.5% 
38.71 0.22 0.23 8.9% 
63.57 0.44 0.47 4.2% 
mean error 8.90% 

 
Conclusions 
 
The proposed algorithm uses a principle that is different from 
the ones used in previous works, combining both frequency 
domain and time domain techniques. This work presents the 
proposal and the test of a system that allows the enrichment of 
thermodilution signals captured with slow temperature sensors. 
In the computational simulations and experimental tests with 
the mechanical simulator, the test worked very well, presenting 
errors less than 10%. The effort and computational time was 
much lower than those presented in the literature. The time 
needed to process the data in the proposed algorithm was 
around 9 seconds, in the worst case. Thus, the method has very 
good potential for future use. However, it still needs further 
development, including the test in animal models, and, later, in 
human subjects.  
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