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ARTICLE INFO                                       ABSTRACT 
 
 
 

The economic emission dispatch (EED) assumes a lot of significance to meet the clean energy 
requirements of the society and simultaneously minimizes the cost of generation. The Firefly 
Algorithm (FA) is a nature-inspired meta-heuristic algorithm for solving multimodal optimization 
problems.  This paper presents an FA based strategy for obtaining the robust solution of EED 
problem involving normalized objective function. The feasibility of the proposed approach is 
evaluated through two test systems and the results are presented to demonstrate its effectiveness. 
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1.0 INTRODUCTION 
 
Economic Load Dispatch (ELD) is a computational process of 
allocating the total required generation among the available 
generating units subject to load and operational constraints 
such that the cost of operation is minimum (Chowdhury and 
Rahman1990).  The generation of electricity from fossil fuels 
such as coal, oil and gas, releases several contaminants such as 
sulphur oxides (SOx), nitrogen oxides (NOx) and carbon 
dioxide into the atmosphere. The enactment of the ‘Clean Air 
Act Amendment of 1990’ and its acceptance by all nations  
forces the utilities to modify their operating strategies to meet 
rigorous environmental standards set by this legislation.   
 
Minimum Emission Dispatch (MED) have been suggested for 
reducing the emissions, which minimizes only the emissions 
that result in high operating cost; and efforts initiated by 
researchers to develop algorithms for Economic Emission 
Dispatch (EED) that minimizes the cost of generation and 
emission levels simultaneously. Several researchers have 
considered emissions either in the objective function or treated 
emissions as additional constraints (Lamont and Obessis1995).  
 
 

*Corresponding author: Sakthidasan, A. 
Department of Electrical and Electronics Engineering, UCEA (A Constituent 
College of Anna University, Chennai) Arani, Tamil Nadu, India. 
 

 
Traditional mathematical programming techniques such as 
lambda iteration, gradient search, linear programming and 
Lagrangian relaxation (Chowdhury and Rahman1990) and 
modern heuristic optimization techniques such as genetic 
algorithms (Abido M. 2003; Abido MA. 2003), evolutionary 
programming (Abido M. A.  2003; Abido  M. A. 2006)                   
and particle swarm optimization (Hemamalini and Sishaj P 
Simon 2008; Jiejin Cai et al., 2009) have been widely applied 
in solving the EED problems. 
 
Recently, firefly algorithm (FA) has been suggested for 
solving optimization problems (Yang et al., 2008). It is 
inspired by the light attenuation over the distance and fireflies’ 
mutual attraction rather than the phenomenon of the fireflies’ 
light flashing. In this approach, each problem solution is 
represented by a firefly, which tries to move to a greater light 
source, than its own.  It has been applied to a variety of ELD 
problems (Kuldeep Kumar Swarnkar 2012; Vinod Kumar and 
Lakshmi Phani 2011) and found to yield satisfactory results.  
The effort in this article is to solve the EED problem  
involving normalized objective function using FA with a view 
of obtaining the global best solution 
  
2.0 FIREFLY ALGORITHM 
 
The FA is a Meta heuristic, nature-inspired, optimization 
algorithm which is based on the social flashing behavior of 
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fireflies, or lighting bugs, in the summer sky in the tropical 
temperature regions. It was developed by Dr. Xin-She Yang at 
Cambridge University in 2007, and it is based on the swarm 
behavior such as fish, insects, or bird schooling in nature. It is 
similar to other optimization algorithms employing swarm 
intelligence such as PSO and ABC. But FA is found to have 
superior performance in many cases (Yang et al., 2008). FA 
initially produces a swarm of fireflies located randomly in the 
search space. The initial distribution is usually produced from 
a uniform random distribution. The position of each firefly in 
the search space represents a potential solution of the 
optimization problem. The dimension of the search space is 
equal to the number of optimizing parameters in the given 
problem. The fitness function takes the position of a firefly as 
input and produces a single numerical output value denoting 
how good the potential solution is. A fitness value is assigned 
to each firefly.  
 
The FA uses a phenomenon known is bioluminescent 
communication to model the movement of the fireflies through 
the search space. The brightness of each firefly depends on the 
fitness value of that firefly. Each firefly is attracted by the 
brightness of other fire-flies and tries to move towards them. 
The velocity or the pull a firefly towards another firefly 
depends on the attractiveness. The attractiveness depends on 
the relative distance between the fireflies. It can be a function 
of the brightness of the fireflies as well. A brighter firefly far 
away may not be as attractive as a less bright firefly that is 
closer. In each iterative step, FA computes the brightness and 
the relative attractiveness of each firefly. Depending on these 
values, the positions of the fireflies are updated. After a 
sufficient amount of iterations, all fireflies converge to the best 
possible position on the search space. The number of fireflies 
in the swarm is known as the population size, nf . The 
selection of population size depends on the specific 
optimization problem. However, typically a population size of 
20 to 40 is used for PSO and FA for most applications (Yang 
et al., 2008). Each i -th firefly is denoted by a vector ix  as  
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The search space is limited by the following inequality 
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Initially, the positions of the fireflies are generated from a 
uniform distribution using the following equation 
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Here, rand  is a random number between 0 and 1, taken from 
a uniform distribution. Eq. (3) generates random values from a 
uniform distribution within the prescribed range defined by 
Eq. (2). The initial distribution does not significantly affect the 
performance of the algorithm. Each time the algorithm is 
executed, the optimization process starts with a different set of 
initial points. However, in each case, the algorithm searches 
for the optimum solution. In case of multiple possible sets of 
solutions, the algorithm may converge on different solutions 
each time. But each of those solutions will be valid as they all 
will satisfy the requirements. 

The light intensity of the i -th firefly, iLI  is given by 
)( ii xFitnessLI                                                                  (4) 

 
The attractiveness between the i -th and j -th firefly, jiA ,  is 
given by 
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Where jiR ,  is Cartesian distance between i -th and j -th 
firefly 
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oA is a constant taken to be 1. S  is another constant whose 

value is related to the dynamic range of the solution space. 
The position of firefly is updated in each iterative step. If the 
light intensity of j -th firefly is larger than the intensity of the 
i -th firefly, then the i -th firefly moves towards the j -th 
firefly and its motion at t -th iteration is denoted by the 
following equation: 
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C  is a constant whose value depends on the dynamic range of 
the solution space. At each iterative step, the intensity and the 
attractiveness of each firefly is calculated. The intensity of 
each firefly is compared with all other fireflies and the 
positions of the fireflies are updated using (7). After a 
sufficient number of iterations, all the fireflies converge to the 
same position in the search space and the global optimum is 
achieved. 
 
3.0 PROBLEM FORMULATION 
 
3.1 Economic Load Dispatch 
 
The ELD problem may be expressed by minimizing the fuel 
cost of generating units while satisfying several equality and 
inequality constraints as  
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3.2 Minimum Emission Dispatch 
 
The objective of MED is to minimize the emissions of all the 
generating units due to the burning of fuels for production of 
power to meet the load demand and expressed as  
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3.3 Economic Emission Dispatch 
 
The EED problem is to determine optimal real power 
generations that minimize the two conflicting objectives of 
fuel cost and emissions, while satisfying several equality and 
inequality constraints. The bi-objective of EED problem can 
be mathematically formulated as  
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PROPOSED METHOD 
 
Usually the bi-objective EED problem is formulated as a 
single objective optimization problem through assigning 
different weight values for each objective.  It requires proper 
assignment of weight values by trial and error process for 
obtaining the better compromised solution. The difficulties in 
assigning the weight values can be eliminated by the 
modifying the objective function through normalizing the 
individual objectives as  
 
Minimize  
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The FA based solution process involves representation of 
problem variables and formation of an augmented cost 
function. Each firefly comprising the decision variables of real 
power generations GP  can be represented as 
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The FA searches for optimal solution by minimizing a light 
intensity function, which is obtained from the problem 
objective and constraint equations. The new firefly during the 
solution process can be limited to satisfy the generation limit 
constraint of Eq. (9) but the power balance constraint of Eq. 
(8) is handled through penalty function approach.  The penalty 
terms are incorporated in the augmented cost function and are 
set to increase the light intensity of the firefly depending on 
the magnitude of the violation. The light intensity function can 
be obtained by transforming the objective function and power 
balance constraint as 
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The process of generating new swarm can be terminated either 
after a fixed number of iterations or if there is no further 
significant improvement in the global best solution. An initial 
swarm of fireflies is obtained by generating random values 
within their respective limits to every individual in the swarm 
through Eq. (10). The light intensity is calculated by 
considering the values of each firefly and the movements of all 
fireflies are performed with a view of maximizing the light 
intensity. The iterative process is continued till convergence. 
The pseudo code of the PA is as follows.  

 
Read the EED Data 
Choose the number of fireflies in the population, nf  and   

maxIter  for convergence check. 
Generate  the initial population of fireflies 
Set  the iteration counter  0t   
while  (termination requirements are not met) do  
for  nf1i :  

Evaluate )( GP  using Eq. (14) and  iLI  using  
Eqs. 16 and 17 for i -th firefly 

for nf1j :  

Evaluate )( GP  using Eq. (14) and  LIj  using  Eqs. 
16  and 17 for i -th firefly 

if  ji LILI   

Compute ijR using Eq. (6) 

Evaluate  ijA using Eq. (5) 

Move j -th firefly towards i -th firefly   through   Eq. (7) 
end-(if) 
 end-( j ) 
end-( i ) 
Rank the fireflies 
end-(while) 
 
5.0 SIMULATIONS 
 
The PM is tested on two different test cases with varying 
degree of complexity for studying its performance. The first 
one is the standard IEEE 30-bus 6 generator system, the 
second system comprises 40 generators. The data for fuel cost, 
emissions and loss coefficients are taken from Ref 
(Hemamalini and Sishaj P Simon 2008; Jiejin Cai et al., 2009; 
Yang et al., 2008; Kuldeep Kumar Swarnkar 2012; Vinod 
Kumar and Lakshmi Phani 2011; Leandro dos Santos Coelho 
and Viviana Cocco Mariani 2010). The results of the PM for 
test system-1 are compared with that of PSO and chaotic PSO 
(CPSO) based techniques suggested in Ref. (Hemamalini and 
Sishaj P Simon 2008; Jiejin Cai et al., 2009). 
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Table 1. ELD Results for Test Case-1 
 

GiP  PM PSO CPSO 

1GP  0.11796 0.1281 0.0784 

2GP  0.30532 0.2702 0.2826 

3GP  0.62489 0.5552 0.5366 

4GP  0.95879 1.0053 0.9550 

5GP  0.50151 0.4544 0.6337 

6GP  0.35032 0.4453 0.3782 

Fuel Cost 606.256 606.66 607.760 
Emission 0.218753 0.2207 0.22218 

 
The optimal generations, fuel cost and emissions for the test 
case-1 for a load demand of 2.834 per unit are given in Tables 
1-3.  The fuel cost and emissions corresponding to ELD, given 
in Table-1, obtained through Eq. (8) are 606.256 h/$  and 
0.218753 hton / respectively. The algorithm offers the lowest 
fuel cost, while comparing with that of the existing methods. 
The solution of MED through Eq. (12), given in Table-2, 
offers the lowest emission of  0.194186 hton /  and fuel cost 
of 642.921. The EED results obtained through Eq. (14) are 
given in  
 

Table 2.  MED Results for Test Case-1 
 

GiP  PM PSO CPSO 

1GP  0.40888 0.3713 0.4972 

2GP  0.46179 0.4665 0.6047 

3GP  0.54160 0.5642 0.4655 

4GP  0.38734 0.3650 0.3326 

5GP  0.54180 0.5223 0.4655 

6GP  0.51331 0.5783 0.4990 

Fuel Cost 642.921 648.01 663.310 
Emission 0.194186 0.19450 0.19685 

 
Table 3.  EED Results for Test Case-1 

 

GiP  PM PSO CPSO 

1GP  0.34950 0.1761 0.2555 

2GP  0.42576 0.2819 0.3582 

3GP  0.55340 0.5408 0.5542 

4GP  0.50600 0.7696 0.7262 

5GP  0.54203 0.6502 0.5619 

6GP  0.47703 0.4457 0.4085 

Fuel Cost 629.183 612.35 614.790 
Emission 0.195204 0.20742 0.20105 

 
The detailed results in terms of real power generation, net fuel 
cost and emissions are presented for test case 2  in Table 4. It 
can be observed from the table that the PM offers an EED 
solution that lies in between ELD and MED solutions.  It is 
observed from above discussions that the emissions are higher, 
when the fuel cost is lower and vice versa owing to the 
conflicting nature of the objectives in the problem. Thus, the 
PM offers the lowest fuel cost in economic dispatch, lowest 

emissions in the emission dispatch and provides a compromise 
between fuel cost and emissions in EED.  
 
6.0 SUMMARY 
 
A new methodology involving FA for solving EED problem 
involving normalized objective function has been developed 
and studied on two example problems. The ability of the PM 
to produce the global best solution that simultaneously 
minimizes the fuel cost and emissions has been projected. It 
has been chartered that the new approach fosters the continued 
use of FA and will go a long way in serving as a useful tool in 
load dispatch centre. 
 
NOMENCLATURE 
 

iii cba    fuel cost coefficients of  the thi  generator  

ooo BBB    loss coefficients 

ii ed   coefficients of  valve point effects of  the thi   
generator  

EED   economic emission dispatch 
ELD   economic load dispatch 
FA   Firefly algorithm 

 Gii PE   emission cost function of  the thi  generator  
in hton/  

 Gii PF  fuel cost function of  the thi  generator in 
h/$  

iLI    light intensity of the i -th firefly 
maxIter  Maximum number of iterations for 

convergence check. 
MED   minimum emission dispatch 
nd    Number of decision variables 
nf   Number of fireflies in the populations 
ng   Number of generators 
PM   proposed method 
PSO   particle swarm optimization 
CPSO   chaotic PSO 

GiP   real power generation at thi generator  
maxmin & GiGi PP    minimum and maximum generation  

limits of thi generator respectively 
DP   total power demand  

LP    net transmission loss  

ijR
 

Cartesian distance between the i -th and 

j -th firefly 

ix  i -th   firefly  
t        iteration count 
C   Random movement factor 

jiA ,    Attractiveness  between the  i -th and j -th f 
  irefly 

oA and S  Maximum attractiveness and light intensity 
absorption coefficient respectively 

ii   i   i  and i   emission coefficients of thi   
generator 
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

   
objective function to be minimized 



  
augmented objective function to be 
minimized 

min and max    minimum and maximum values  
respectively 

 
PA   Proposed algorithm 
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