

ORIGINAL RESEARCH ARTICLE

ACCESS CONTROL SCHEME TO BIG DATA USING PRIVACY PRESERVING POLICY

*Sriraksha, N., Surabhi, M., Amrutha, B.R., Rakshitha, M., Asha, R.N.

Students, Dept of CSE, Global Academy of Technology
Asst Prof., Dept of CSE, Global Academy of Technology

ARTICLE INFO ABSTRACT

Controlling the access to a huge amount of big data becomes a very challenging issue, especially
when big data are stored in the cloud. Ciphertext-policy attribute-based encryption (CP-ABE) is a
encouraging encryption technique that helps end-users to encrypt their data under the access
policies defined over some attributes of data consumers and only allows data consumers whose
attributes satisfy the access policies to decrypt the data. In CP-ABE, the access policy is attached
to the ciphertext in plaintext form, which may also leak some private information about end-users.
The attribute values were partially hidden in the already existing systems, while the attribute
names are still unprotected. In this paper, we propose access control scheme to big data using
privacy preserving policy. Specifically, we hide the whole attribute (rather than only its values) in
the access policies. To aid data decryption, we also design a novel attribute bloom filter to
evaluate whether an attribute is in the access policy and locate the exact position in the access
policy if it is in the access policy. Security analysis and performance evaluation show that our
scheme can preserve the privacy from any linear secret-sharing schemes access policy without
employing much overhead.

Copyright © 2018, Sriraksha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

In big data, an immense and voluminous amount of data can be
generated quickly (e.g., social networks, sensors, machines,
smart phones,, etc.)., Conventional computer systems are not
competent to store and process these big data. As cloud
computing is flexible and elastic computing resources .Cloud
computing is a natural fit for and processing big data [1], [2].
With cloud computing, end- users store their data into the
cloud, and rely on the cloud server to share their data to other
users (data consumers). In order to only share end-users’ data
to authorized users, it is necessary to the requirements of end-
users. When outsourcing data into the cloud, end-users lose the
physical control of their data. Moreover, cloud service idersare
not fully-trusted by end-users, which makes the access control
more challenging. For an instance, if the traditional access
control mechanisms (e.g., access control lists) are applied, the
cloud server becomes the judge to evaluate the access policy

*Corresponding author: Sriraksha, N.,
Students, Dept of CSE, Global Academy of Technology

and make access decision. Thus, end-users may worry that the
cloud server may make wrong access decision intentionally or
unintentionally, and disclose their data to some unauthorized
users. In order to enable end-users to control the access of their
own data, some attribute-based access control schemes [3]–[5]
are proposed by leveraging attribute-based encryption [6], [7].
In attribute-based access control, end-users first define access
policies for their data and encrypt the data under these access
policies. Only the users whose attributes can satisfy the access
policy are eligible to decrypt the data. The existing attribute-
based access control schemes can deal with the attribute
revocation problem [3]–[5], they all suffer from one problem:
the access policy may leak privacy. This is because the access
policy is associated with the encrypted data in plaintext form.
From the plaintext of access policy, the adversaries may obtain
some privacy information about the end-user. For an instance,
Alice encrypts her data to enable the “psychology doctor” to
access. So, the access pol-icy may contain the attributes
“psychology” and “doctor.” If anyone sees this data, although
he/she may not be able to decrypt the data, he/she still can
guess that Alice may suffer from some psychological
problems, which leaks the privacy of Alice.

ISSN: 2230-9926

International Journal of Development Research
Vol. 08, Issue, 09, pp.22919-22926, September, 2018

Article History:

Received 20th June, 2018
Received in revised form
17th July, 2018
Accepted 27th August, 2018
Published online 30th September, 2018

Available online at http://www.journalijdr.com

Key Words:

Access control, Attribute bloom filter (ABF),
Bigdata, Linear secret-sharing scheme (LSSS)
Access structure, Privacy-preserving policy.

Citation: Sriraksha, N., Surabhi, M., Amrutha, B.R., Rakshitha, M., Asha, R.N. 2018. “Access control scheme to big data using privacy preserving
policy”, International Journal of Development Research, 8, (09), 22919-22926.

 ORIGINAL RESEARCH ARTICLE OPEN ACCESS

To prevent the privacy leakage from the access policy, a
straight forward method is to hide the attributes in the access
policy. However, when the attributes are hidden, not only the
unauthorized users but also the authorized users cannot know
which attributes are involved in the access policy, which
makes the decryption a challenging problem. Due to this
reason, existing methods [8]–[12] do not hide or anonymize
the attributes. Instead, they only hide the values of each
attribute by using wildcards [8], [9], hidden vector encryption
[10].Hiding the values of attributes can somehow protect user
privacy, but the attribute name may also leak private
information. Most of these partially hidden policy schemes
only support specific policy structures (e.g., AND-gates on
multivalued attributes). In this paper, we aim to hide the whole
attribute instead of only partially hiding the attribute values.
Moreover, we do not restrict our method to some specific
access structures. The basic idea is to express the access policy
in linear secret- sharing scheme (LSSS) access structure (M, ñ)
where M is a policy matrix and ñ matches each row Mi of the
matrix M to an attribute [6], and hide the attributes by simply
removing the attribute matching function ñ. Without the
attribute matching function ñ, it is necessary to design an
attribute localization algorithm to evaluate whether an attribute
is in the access policy and if so find the correct position in the
access policy. To this end, we further build a novel attribute
bloom filter (ABF) to locate the attributes to the anonymous
access policy, which can save a lot of storage overhead and
computation cost especially for large attribute universe.

Our contributions are summarized as follows.

 We propose an access control scheme to big data using

privacy preserving policy, where the whole attributes are
hidden in the access policy rather than only the values of
the attributes.

 We also design a novel ABF to evaluate whether an
attribute is in the access policy and locate the exact
position in the access policy if it is in the access policy.

 We further give the security proof and performance
evaluation of our proposed scheme, which demonstrate that
our scheme can preserve the privacy from any LSSS access
policy without employing much overhead.

Related Work

In order to control the access of their own data stored on
untrusted remote servers (e.g., cloud servers), the end-users
have used encryption-based access control. It is a very
effective method, where data are encrypted by end-users and
only authorized users are given decryption keys. This can also
prevent the data security during the transmission over wire-less
networks which are vulnerable to many threats [13]–[15].
However, traditional public key (PK) encryption methods are
not suitable for data encryption because it may produce
multiple copies of ciphertext for the same data when there are
many data consumers in the system. In order to cope with this
issue, some attribute-based access control schemes [3], [5] are
pro- posed by leveraging attribute-based encryption [6], which
only produces one copy of ciphertext for each data and does
not need to know how many intended data consumers during
the data encryption. Moreover, once the cloud data are
encrypted. Some searchable encryption algorithms [16], [17]
are proposed to support search on encrypted cloud data.

Toward this problem, some works [8]–[12], [18]–[21] have
been proposed to hide the access policy. In [8], two con-struct
ions are proposed to partially hide the access policy. However,
the access policy only supports AND-gates on multivalued
attributes with wildcards. Li et al. [9] followed this paper and
hided the attribute value by using a hash value to denote the
value of an attribute. Considering that [8] and [9] are
selectively secure, Lai et al. [12] proposed a fully secure
ciphertext-policy attribute-based encryption (CP-ABE) scheme
with partial hidden access policy. However, this scheme is
only restricted to a specific access policy (i.e., AND-gates with
multivalued attributes with wildcards) as in [8] and [9]. To
support more expressive access policy, Lai et al. [20] also
proposed a method to hide attribute values in access policy
expressed in LSSS structure. Besides, there are also some
policy hiding schemes using hidden vector encryption [10] and
inner product encryption [11]. However, all of these existing
schemes can only partially hide the access policy (i.e., hiding
the values of the attributes). The attribute names are not hidden
in the access policy.

Preliminaries

Linear Secret-Sharing Schemes

Definition 1 (LSSS [6]): A secret sharing schemeMover aset of
parties P is called linear over Zp (p is a prime) if: the shares for
each party form a vector over Zp; there exists a matrix A
called the share-generating matrix for M. The matrix A has l
rows and n columns. For =1,...,l, theith row ofAis labeled by a
partyñ(i)[ñis a function from {1 ,...,}l to P]. When we consider
the column vector v�=(s,r 2 , . . . , rn), where s∈Zpisthe
secret to be shared and r 2 ,...,r∈nZp are randomlychosen, then
Av is the vector of l shares of the secret s according to M. The
share (Av)i belongs to party ñ(i). It is shown in [22] that every
linear secret-sharing scheme according to the above definition
also enjoys the linear recon-structing property, defined as
follows: Suppose that M is an LSSS for access structure A. Let
S∈A be an authorized set, and let I⊂{1,2 ,...,l} be defined as
I= {i:ñ(i)∈S}. There exist constants {ùi∈ ∈Zp}i I such that if
{ëi} are valid any secret s according to M, then ù ës.

Furtherrmore,∈ these constants ùi can be =found in time
polynomial in the shares of i Ii {} size of the share{-
}generating matrix A. For any unauthorized set, no such
constants exist.

Bilinear Pairing

Let G1, G2 and GT be three multiplicative groups with the
same prime order p. A bilinear mapping is a mapping eˆ :G1×
G2→GTwith the following properties.

Bilinearity: eˆ(ua,vb)=ˆe(u, v)abfor all u ∈ ∈G1, v G2and
a,b∈Zp.

Non-Degeneracy: There exist u ∈ ∈G1, v G2such that eˆ(u,
v)≠I where I is the identity element ofGT.

Computability: it can be computed efficiently.

Bloom Filter: The bloom filter (BF) concept is a space-
efficient probabilistic data structure, which is used to test
whether an element is a member of a set. Specifically, a BF

22920 Sriraksha et al. Access control scheme to big data using privacy preserving policy

consists of a bit array of m bits and k independent hash
functions defined as follows:

hi : {0,1} *›→[1,m]

for 1≤ I ≤ k

Initially, all the positions of the array are set to 0. To add an
element e to the set, the BF building algorithm computes all
the position indices as h{i(e)i}[1∈,k] and sets the values at the
corresponding positions in the bit array to 1. Fig. 1 gives an
example of BF for set x,{y ,} where the values at positions
indexed by h1(x), h2(x), h3(x), h1(y), h2(y), h3(y) are set to 1.

Fig. 1. Example BF for set {x,y}

To check whether a given element x belongs to the set S, the
BF query algorithm computes all the hash values
h{i(x)i}[∈1,k] to get k array positions. If any of the bits at
these positions are 0, the element x is definitely not in the set.
However, if all of the bits are 1, we can say the element x is
probably belong to the set S. There is a possibility for some
x/S, all of the bits at the corresponding positions of hi(x) are 1,
which is called the false positive. For example, the element w
in Fig. 1 is not in the set x,y but all the corresponding positions
of hi(w) are 1.

Decisional q-BDHE Assumption

The decisional q-bilinear Diffie-Hellman exponent (Decisional
q-BDHE) problem is defined as follows. Choose a group G of
prime order p according to the security parameter ë. Let
a,s∈Z�

p be chosen at random andg be a generator of G. Let gi
denote gai . When given �y=(g,g1, . . . ,gq, ,gq+2, . . . ,g2q,gs),
the adversary mustdistinguish eˆ(g,g)aq+1s∈GT from a random
element R in GT .

An algorithm B has advantage ‹ in solving decisional q- BDHE
problem inGif

.PrÓB .y�,T = eˆ(g,g)aq+1s Ó = 0Ó− PrBÓ,T = R) = 0 ≥o

Definitions

We will first describe the system model of big data storage and
sharing. Then, we define our proposed big data access control
scheme and its security model.

Definition of System Architecture: Consider the big data
access control system, as shown in Fig. 2. The system consists
of five entities, namely cloud servers, attribute authority, end-
users, and data consumers.

Fig. 2. System Architecture

Cloud Servers: Cloud Servers are employed to store, share and
process big data in the system. The cloud servers are managed
by cloud service providers, who are not in the same trust
domain as end-users. Thus, cloud servers cannot be trusted by
end-users to enforce the access policy and make access
decisions. We also assume that the cloud server cannot collude
with any end-users or data consumers.

Attribute Authority: The attribute authority manages allthe
attributes in the system and assigns attributes chosen from the
attribute space to end-users. It is also a key generation center,
where the public parameters are generated. It also grants
different access privileges to end-users by issuing secret keys
according to their attributes. The attribute authority is assumed
to be fully trusted in the system.

End-User: End-users are the data owners/producers
whooutsource their data into the cloud. They also would like to
control the access of their data by encrypting the data with CP-
ABE. End-users are assumed to be honest in the system.

Data Consumers: Data consumers request the data from cloud
servers. Only when their attributes can satisfy the access
policies of the data, data consumers can decrypt the data.
However, data consumers may try to collude together to access
some data that are not accessible individually.

Definition of Our Scheme

Definition 3: Our big data access control scheme consists of
the following algorithms: Setup, KeyGen, Encrypt, and
Decrypt.

 Setup(1ë) → (PK, MSK): The setup algorithm takes
asinput a security parameter ë. It outputs the PK and
master secret key.

 KeyGen(PK, MSK, S) → SK: The key
generationalgorithm takes as inputs the PK, the master
keyMSK and a set of attribute S. It outputs the
corresponding secret key SK.

 Encrypt(PK, m, (M,ñ)) →(CT, ABF): The data
encryption algorithms contains: data
encryptionsubroutine Enc and ABF building subroutine
ABFBuild.

 Enc(PK,m,(M,ñ→)) CT: The data encryption
subroutine takes as inputs the PK, the message m and
access structure (M,ñ). It outputs a cipher-text

22921 International Journal of Development Research, Vol. 08, Issue, 09, pp. 22919-22926, September, 2018

CT.ABFBuild(M,ñ)→ABF: The ABF building sub-
routine takes as input the access policy (M, ñ). It
outputs the ABF.

 Decrypt(M, ABF, PK, SK, CT) → m: The decryption
algorithm consists of two subroutines: ABFQuery and
Dec.

 ABFQuery(S,ABF,PK)→ñ:Thej ABF query algorithm
takes as inputs the attribute set S, the ABF and the PK.
It outputs a reconstructed attribute mapping
ñj=(r{ownum,att)}S, which shows the corresponding
row number in the access matrix M for all the attributes
att∈S.

 Dec(SK,CT,(M,ñj))→m or⊥: The data decryp-tion
algorithm takes as inputs the secret key SK, the
ciphertext CT as well as the access matrix M and the
reconstructed attribute mapping ñj. If the attributes can
satisfy the access policy, it outputs the message m.
Otherwise, it outputs⊥.

Security Model definetion

We consider the indistinguishability against selectively chosen
plaintext attacks. It is based on the following game between an
adversary A and a simulator B.

 Init: The adversary cAhooses a challenge access

structure(M�, ñ�), whereM�is anl�n�matr×ix, and
ñ�maps eachrow of M� to an attribute.

 Setup: The challenger runs the Setup algorithm and
givesthe public parameters PK to the adversary A.

 Phase 1: In this phase, the adversaryAissues queries
forsecret keys related to some attributes Satt.

If Satt satisfies (M∗, ñ∗), then abort.

Otherwise, the simulator generates a secret key related to Satt
for the adversary A.

Challenge: The adversaryAsubmits two equal lengthmessages
m0 and m1 toB. The simulator B randomly chooses b∈0{, 1
}and encrypts mb under the challenge access structure
(M�,ñ�). Finally it sends the generated challenge
ciphertextCT� to the adversary.

 Phase 2: Phase 2 is the same as Phase 1.
 Guess: The adversary outputs a guessbjof b.
 The advantage of A in this game is defined as

Adv(A)=|Pr[bj = b] − 1/2|.

Construction of the Proposed Scheme

The construction of our big data access control is based on the
CP-ABE in [6]. However, our access policy privacy pre-
serving method can also be applied for any CP-ABE methods
with LSSS structured access policies. According to the
definition in Section IV-B, our big data access control scheme
consists of four phases: 1) system setup; 2) key generation; 3)
data encryption, and 4) data decryption.

System Setup

During the system setup phase, the attribute authority runs the
Setup algorithm. Let U denote the attribute space in the
system. Let G and GT be cyclic multiplicative groups of prime

orderp, andˆe : G×G→GT be a bilinear map. Let Latt be the
maximum bit length of attributes in the system. Let Lrownum
be the maximum bit length of the row numbers of access
matrix. Let LABF be the size of bit array of the ABF. Let k be
the number of hash functions associated with the ABF. The
attribute authority randomly chooses a generator g∈ G,á,a∈
Z�, and U= |U | random group elements h1, h 2, . . . , h U
∈G. It also generates k hash functionsH1(), H2(), . . . ,Hk()that
maps an element to a position inthe range of [1,LABF].

The PK is published as

PK = (g,eˆ(g,g)á, ga, Latt, Lrownum, LABF h1, h 2, . . . ,hU,
H1(), H2(),. ..,Hk()•.

The master secret key is set as MSK =gá.

Key Generation: Each data consumer should register and
authenticate to the attribute authority. If the data consumer is
not legal, it aborts. Otherwise, the attribute authority will
evaluate the role of the data consumer in the system and assign
a set of attributes S chosen from the attribute spaceU1to this
data consumer. Together with these attributes, the authority
also generates a corresponding secret key for this data
consumer by running the following algorithm.

KeyGen(PK, MSK, S) → SK: The algorithm takes asinput the
PK, the master key MSK and a set of attributes S. It computes
. Σ
K =gágat, L =gt, Kx=ht

xx∈S

wheret∈Zp

� is chosen at random. Finally, the secret key is set
as

SK = (K, L,{Kx}x∈S, S•.

Data Encryption

Before outsourcing data into the cloud, end-users encrypt the
data by running the Encrypt algorithm. It first calls the data
encryption subroutine to encrypt the data into cipher-texts
under access policies expressed in LSSS structure. Other
access structure, such as Boolean Formulas and Threshold
Gates, can also be transformed into LSSS structure.

1) Enc(PK, m, (M,ñ)) → CT: The data encryption sub-
encryption secret s ∈ Z∗ randomly and then selects A random
vector í = (s, yp y), where y, . . . ,y are ∗ 2, . . . , n2n routine
takes as inputs the PK, the message m and access structure
(M,ñ). As shown in Fig. 3, M is an×l n access matrix and the
injective function ñ maps rows of M to attributes. The
algorithm first chooses an used to 1The attribute space should
be large such that it would be time- consuming for cloud
servers to exhaustively search the attribute space.

Share the encryption secret s. For i=1 ,...,l, it calcu-
latesëi=Mií·,�where Mi is the vector corresponding to the ith
row of M. Then, it outputs the ciphertext as

In traditional attribute-based encryption scheme, the access
policy (M,ñ) will be attached to the ciphertext CT. However,
the access policy is in plaintext, which may leak some private
information about the end-users. Based on our observation, the
attributes are leaked from the attribute mapping function ñ. So,
in order to prevent the privacy leakage, we remove this

22922 Sriraksha et al. Access control scheme to big data using privacy preserving policy

attribute mapping function ñ. However, when ñ is removed, it
becomes difficult for data consumers to decrypt the data, as
they do not know which attributes are involved in the access
policy. To cope with this problem, we propose an efficient
attribute localization algorithm by utilizing the BF. However,
traditional BF only provides the membership query for a
large set, while our purpose goes further: we not only need to
evaluate whether an attribute is in the access policy, but also
need to locate the attribute to the precise row number in the
access matrix.

Fig. 3. LSSS access policy and ABF

Fig. 4.ë-bit Element of ABF with Lrownum-bit row number
string and Latt(=ë−Lrownum)-bit attribute string

Moreover, due to the false positive property, traditional
BF cannot be applied for the attribute localization. To this
end, we employ a garbled BF [23] as the building block of our
attribute localization algorithm (ABF). Instead of using an
array of bits in traditional BF, the garbled BF uses an array of
ë-bit, where ë is the security parameter. Different from the
traditional BF, the false positive probability is much lower,
because it not only depends on the collision probability of hash
functions, but also depends on the probability of string
matching. Although the garbled BF achieves much lower false
positive, it is still designed for membership query only. In to
precisely locate attributes to the corresponding row number in
the access matrix, we employ a specific string as the element
of the garbled BF. As shown in Fig. 4, the element is a
concatenation of two fixed length strings: one string rep-
resents the row number with Lrownum-bit, and the other string
represents the attribute with the bit length of Latt-bit, where

LrownumL+attë.=

When the data encryption is finished, the end-users then build
the ABF by running the following subroutine.

1) ABFBuild(M,ñ)→ABF: The ABF building
subroutinetakes as input the access policy (M,ñ). It first binds
the attributes involved in the access policy and its
corresponding row number in the access matrix M together
and obtains a set of elem=en{t|s|Se}∈iatte i [1,l], where the i-
th row of the access matrix maps to the attrib=uteatteñ(i). Both
of the row number i and the attribute atte are expanded to the
maximum bit length by filling with zeros on the left of the bit
strings. By taking the set of elements Se as an input, the ABF
can be constructed by calling the garbled BF Building
algorithm in [23]. To add an element e in the set Se to the
ABF, the algo- rithm first shares the element e with (k,k) secret
sharing scheme by randomly generating k− 1 ë-bit strings r1,e,
r2,e,. . . , rk−1,e, and setting rk,e= r1,e � r2,e ···� rk−1,e � e.

Then, it hashes the attribute atte associated with the element e
with k independent and unified hash functions H1(), . . .
,Hk()and gets H1(atte), H2(atte),...,Hk(atte) ‘r1,e→
H1(atte)position in ABF. rk,e→Hk(atte)position in ABF.

When we continue to add elements to the ABF, some location
j=Hi(e) may have been occupied by a previously added
element. If such situation happens, we reuse this existing share
as one share of the new element. For example, as shown in
Fig. 5, the position Hj(atte2)of element e2is the same as the
position Hi(atte1)of element e1. Considering that this position
of the ABF has already been occupied by ri,e1 , instead of ë-bit
string, we setrj,e2r=i,e1 . If we change this positionwith
another string, the previously inserted element cannot be
recovered.

Fig. 5. Example of ABF

Fig. 6. String abstraction from the element

Algorithm 1 ABFBuild

Input: An LSSS access policy(M, ñ),ë,LABF
Input: khash functions{H1(), ··· ,}Hk()
Output: ABF

1:Generate an element set Se from the access policy (M, ñ)
2:ABF = new LABF element array of bit strings
3:for i=0 toLABF−1 do
4:ABF[i]=NULLdInitialize the ABF with“NULL”
5:for each elemente=i||atte∈Se do
6: emptyPos= −1,finalShare= x

22923 International Journal of Development Research, Vol. 08, Issue, 09, pp. 22919-22926, September, 2018

7: for i=0 tok−1 do
8: j = Hi+1(atte) d get the index of the position
9: if ABF[j]==NULL then
10: if emptyPos==− 1 then
11: d reserve this position for the finalShare
12: emptyPos = j d generate a new share
13: else
14: generate a random string rj,e with ë bits
15: ABF[j]=rj,e
16: finalShare=finalShare⊕ ABF[j]
17: else d reuse an existing share
18: finalShare=finalShare⊕ ABF[j]
19: ABF[emptyPos] = finalShare
20: fori= 0 to LABF 1−do
21: if ABF[i]==NULL then
22: d fill the empty position with random strings
23: generate a random string ri with ë bits

The entire ABF building algorithm is shown in Algorithm 1.
Finally, the end-users will outsource the data in the form of
(CT, M, ABF) to cloud servers.

Data Decryption

When accessing the data stored in the cloud, data consumers
can download the encrypted data according to their interests.
However, the access control happens during the decryption,
which means that data consumers can decrypt the data only
when their attributes can satisfy the access policies used to
encrypt the data. In traditional ABE systems, the access pol-
icy (M,ñ) is attached to the ciphertext. So, the data consumers
can easily check whether their attributes can satisfy the access
policy. However, in our scheme, we hide the attributes map-
ping function ñ, so data consumers should first check which
attributes they owned are in the access matrix by running the
ABF query subroutine as follows.

1) ABFQuery(S,ABF,PK) →ñj: It takes as inputs theattribute
set S, the ABF and the PK. For each attribute att∈S owned by
the data consumer, the algorithm first computes the position
indices by feeding the attribute att with the k hash functions
H1 (),...,Hk() and gets H1(att), H2(att),...,Hk(att).

Then, it fetches the corresponding strings from theposi-tions
indexed by H(att) (i∈ [1,k]) in the ABF as I follows:

H1(att)position in ABF→ r1,e

Hk(att)position in ABF→rk,e.

After that, it reconstructs the element e as e = r1,e⊕r2,e⊕ · · ·
⊕rk−1,e⊕

rk,e = r1,e ⊕ r2,e ⊕· · ·⊕ rk−1,e ⊕ r1,e ⊕r2,e ⊕ ··· ⊕ rk−1,e
⊕ e.

Note that the element e is in the format of e= |i| atteas shown in
Fig. 4. Then, it takes the last Latt bits from the string e, and
removes all the zero bits on the left of the string to obtain the
string atte. As shown in Fig. 6, if atte is the same as the
attribute att, we say that this attribute att is in the access
matrix. Then, it obtains the first Lrownum bits from the string
e to obtain the corre-sponding row number by removing all the
zero bits at the left as well. Otherwise, atte is not the same as
the attribute att, it means that the attribute att does not exist in

the access policy. Finally, it outputs the reconstructed attribute
mapping as which shows the corresponding row number in the
access matrix M. The ABF query algorithm is shown in
Algorithm 2.

ñj= {(rownum, att)}att∈S

When obtaining the access policy (M, ñ), the data consumer
can run the data decryption subroutine as in traditional
attribute-based encryption systems.

Dec(SK, CT, (M,ñj)) → m or⊥: The data decryptionalgorithm
takes as inputs the secret key SK, the ciphertextCT as well as
the access matrix M and the reconstructed attribute mapping
ñj. If the attributes can satisfy the access policy, it can leverage
the Lagrange Interpolation Formula to find coefficients
{ci|i∈I} such that_i∈Iciλi= s, where I = {i : ρ(i) ∈S} ⊂ {1, 2, .
. . ,l}. recover the data as m = C/ˆe(g, g)αs. Otherwise, it
outputs⊥to denote that the decryption fails.

Algorithm 2 ABFQuery

Input: An Attribute Bloom FilterABF, a set of attributesS
Input: khash functions{H1(),•••,Hk()}
Input: Maximum attribute string lengthLatt
Input: Maximum row number string lengthLrownum
Output: ñj= {(rownum,att)}att∈S

a) for eachatt∈S do
b) ReStr= {0}ë d initialize the reconstructed string
c) for i=0 tok−1 do
d) j= Hi+1(att) d get the index of the position
e) ReStr=ReStr⊕ ABF[j]
f) atteStr=LSBLatt(ReStr)
g) d get Lattleast significant bits
h) atte=RmLeadingZeroBits(atteStr)
i) d remove all the leading zero bits
j) if atte==att then
k) rownumStr= MSBLrownum(ReStr)
l) get Lrownum most signdificant bits
m) rownum= RmLeadingZeroBits(rownumStr)
n) remove all the leadindg zero bits
o) Add(rownum, att)intoñ j

Analysis of Our Scheme

Security Analysis

Theorem 1: No polynomial time adversary can
selectivelybreak our big data access control scheme with an
l∗n×∗(n∗q)ch≤allenge access matrix, under the decisional q-
BDHEassumption.

Proof: Our big data access control scheme is constructedon
top of the attribute-based encryption scheme in [6], which is
proved to be selective secure against the chosen plaintext
attacks under the decisional q-BDHE assumption. It is shown
in [6] that if there is an adv Aersary with non-negligible
advanta=ge‹Adv in the selective security game (which is the
A same as the security game defined in Section IV-C), they can
build a simulator B that solves the decisional q-BDHE problem
with non-negligible advantages. Similarly, to prove the
security of our big data access control scheme, we show that if
there is an adversary Ay with non-negligible
advantage‹=AdvAin the selective security game, we can build

22924 Sriraksha et al. Access control scheme to big data using privacy preserving policy

a simulator jtBhat also solves the decisional q-BDHE problem
with non-negligible advantages. The construction of Bj is
similar to the simulator B in [6]. The Init phase in the Bj is the
same as the one in the B. In the Setup j phase, besides the steps
from B, The secret key query phases569 are also the same,
which means that Bj.Phase1 =B.Phase1 and Bj.Phase2
=B.Phase2. The differences are in the Challenge phase: the
encryption algorithm in Bj consists of two subroutines. To
simulate the ABF building subroutine, the simulator Bj queries
from the ABF Build oracle. As for the data encryption
subroutine, Bj.Enc=B.Encrypt. Because the challenge matrix is
selected by the adversary before the Initphase, so the
constructed ABF is the same no matterwhich plaintext is
selected for encryption, which means that the ABF will not
increase the advantages of the adversary iAn the security game.
Similar to the proof in [6], we can show that Bj plays the q-
BDHE problem with non-negligible advantages.

Theorem 2: Our big data access control scheme is privacy-
preserving against the adversaries with polynomial time in the
security parameter ë.

Proof: In our scheme, only the data consumers whohold the
attributes can obtain the string of attribute from the attribute
space U. Adversaries who have no knowledge about the
attribute string cannot launch the brute force attack to guess
the attribute string within polynomial time. So, they cannot
obtain the private information from the access policy
consisting of the matrix M and the ABF.

Data consumers are only allowed to check whether their
owned attributes are in the access policy. Unless the data
consumer has all the attributes of the attribute space or several
data consumers collude together, they cannot check all the
attributes from the attribute space in the system. Since the
ABF is constructed with a garbled BF where ë-bit strings are
embedded into the BF, the false positive probability of the ë.
ABF can be reduced to (1/2).

Performance Analysis: To resist the privacy leakage from the
access policy, we employ an ABF to enable data consumers to
locate the position of attributes in the access policy.
Specifically, the ABF building algorithm is added during the
data encryption and the ABF query algorithm is added during
the data decryption. In order to show how much computation
overhead incurred by the ABF, we do the experiment on a
Unix system with an Intel Core i5 CPU at 2.4 GHz and 8.00
GB RAM. The code uses the pairing-based cryptography
library version 0.5.12, and a symmetric elliptic curve á-curve,
where the base field size is 512-bit and the embedding degree
is 2, such that the security parameter is equal to 1024-bit. To
implement the ABF, we employ the MurmurHash created by
Austin Appleby in 2008.2 All the experimental results are the
mean of 20 trials. Fig. 7(a) shows the encryption time versus
the number of attributes involved in the access policy. The
traditional ABE line in Fig. 7(a) is the implementation of the
ABE without privacy-preserving policy from the [6]. The
encryption time in our scheme consists of both ABF building
and data encryption. The lines of our scheme in this figure
apply eight hash functions and 16 hash functions to build ABF,
respectively. Fig. 7(b) shows the decryption time versus the
number of attributes involved in the decryption. The
decryption time in our scheme consists of both the ABF query
time and data decryption time. The attribute number here also
means how many attributes are tested by running the ABF

query algorithm. Therefore, our scheme can preserve the
privacy of the access policy without increasing much
computation overhead for both data encryption on end-users
and data decryption on data consumers.

Fig. 7. Computation time comparison between the ABE in [6] and
our scheme (data size: 1 KB, security parameter: 1024). (a) Data

encryption. (b) Datadecryption.

Conclusion

In this paper, an efficient and fine-grained data access control
scheme for big data, where the access pol- icy will not leak
any privacy information. Different from the existing methods
which only partially hide the attribute values in the access
policies, our method can hide the whole attribute (rather than
only its values) in the access policies. However, this may lead
to great challenges and difficulties for legal data consumers to
decrypt data. To cope with this problem, we have also
designed an attribute localization algorithm to evaluate
whether an attribute is in the access policy. In order to improve
the efficiency, a novel ABF has been designed to locate the
precise row numbers of attributes in the access matrix. We
have also demonstrated that our scheme is selectively secure
against chosen plaintext attacks. Moreover, we have
implemented the ABF by using MurmurHash and the access
control scheme to show that our scheme can preserve the
privacy from any LSSS access policy without employing much
overhead. In our future work, we will focus on how to deal

22925 International Journal of Development Research, Vol. 08, Issue, 09, pp. 22919-22926, September, 2018

with the offline attribute guessing attack that check the
guessing “attribute strings” by continually querying the ABF.

REFERENCES

[1] P. Mell and T. Grance, “The NIST definition of cloud

computing,” Recommendations Nat. Inst. Standards
Technol., NIST, Washington, DC, USA, Tech. Rep. 800-
145, 2011.

[2] R. Lu, H. Zhu, X. Liu, J. K. Liu, and J. Shao, “Toward
efficient and privacy-preserving computing in big data
era,” IEEE Netw., vol. 28, no. 4, pp. 46–50, Jul./Aug. 2014.

[3] K. Yang and X. Jia, “Expressive, efficient, and revocable
data access control for multi-authority cloud storage,”
IEEE Trans. Parallel Distrib.Syst., vol. 25, no. 7, pp.
1735–1744, Jul. 2014.

[4] H. Li, D. Liu, K. Alharbi, S. Zhang, and X. Lin, “Enabling
fine-grained access control with efficient attribute
revocation and policy updating in smart grid,” KSII Trans.
Internet Inf. Syst., vol. 9, no. 4, pp. 1404–1423, 2015.

[5] K. Yang, Z. Liu, X. Jia, and X. S. Shen, “Time-domain
attribute-based access control for cloud-based video
content sharing: A cryptographic approach,” IEEE Trans.
Multimedia, vol. 18, no. 5, pp. 940–950, May 2016.

[6] B. Waters, “Ciphertext-policy attribute-based encryption:
An expressive, efficient, and provably secure realization,”
in Proc. PKC, Taormina, Italy, 2011, pp. 53–70.

[7] H. Lin, Z. Cao, X. Liang, and J. Shao, “Secure threshold
multi author-ity attribute based encryption without a central
authority,” in Proc.INDOCRYPT, Kharagpur, India, 2008,
pp. 426–436.

[8] T. Nishide, K. Yoneyama, and K. Ohta, “Attribute-based
encryption with partially hidden encryptor-specified access
structures,” in AppliedCryptography and Network Security.
Heidelberg, Germany: Springer,2008, pp. 111–129.

[9] J. Li, K. Ren, B. Zhu, and Z. Wan, “Privacy-aware
attribute-based encryption with user accountability,” in
Proc. Inf. Security, Pisa, Italy, 2009, pp. 347–362.

[10] D. Boneh and B. Waters, “Conjunctive, subset, and range
queries on encrypted data,” in Theory of Cryptography.
Heidelberg, Germany: Springer, 2007, pp. 535–554.

[11] J. Katz, A. Sahai, and B. Waters, “Predicate encryption
supporting dis-junctions, polynomial equations, and inner
products,” in Advances inCryptology–EUROCRYPT 2008.
Heidelberg, Germany: Springer, 2008,pp. 146–162.

[12] J. Lai, R. H. Deng, and Y. Li, “Fully secure cipertext-
policy hiding CP-ABE,” in Information Security Practice
and Experience. Heidelberg, Germany: Springer, 2011, pp.
24–39.

[13] L. Lei, Z. Zhong, K. Zheng, J. Chen, and H. Meng,
“Challenges on wireless heterogeneous networks for
mobile cloud computing,” IEEEWireless Commun., vol.
20, no. 3, pp. 34–44, Jun. 2013.

[14] K. Zhenget al., “Big data-driven optimization for mobile
networks toward 5G,” IEEE Netw., vol. 30, no. 1, pp. 44–
51, Jan./Feb. 2016.

[15] Z. Su, Q. Xu, and Q. Qi, “Big data in mobile social
networks: A QoE-oriented framework,” IEEE Netw., vol.
30, no. 1, pp. 52–57, Jan./Feb. 2016.

[16] H. Li, D. Liu, Y. Dai, and T. H. Luan, “Engineering
searchable encryp-tion of mobile cloud networks: When
QoE meets QoP,” IEEE WirelessCommun., vol. 22, no. 4,
pp. 74–80, Aug. 2015.

[17] H. Li et al., “Enabling fine-grained multi-keyword search

support-ing classified sub-dictionaries over encrypted
cloud data,” IEEE Trans.Depend. Secure Comput., vol. 13,
no. 3, pp. 312–325, May/Jun. 2016,doi:
10.1109/TDSC.2015.2406704.

[18] K. Frikken, M. Atallah, and J. Li, “Attribute-based access
control with hidden policies and hidden credentials,” IEEE
Trans. Comput., vol. 55, no. 10, pp. 1259–1270, Oct. 2006.

[19] S. Yu, K. Ren, and W. Lou, “Attribute-based content
distribution with hidden policy,” in Proc. Secure Netw.
Protocols (NPSec), Orlando, FL, USA, 2008, pp. 39–44

22926 Sriraksha et al. Access control scheme to big data using privacy preserving policy

