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ARTICLE INFO  ABSTRACT 
 
 

Controlling the access to a huge amount of big data becomes a very challenging issue, especially 
when big data are stored in the cloud. Ciphertext-policy attribute-based encryption (CP-ABE) is a 
encouraging encryption technique that helps end-users to encrypt their data under the access 
policies defined over some attributes of data consumers and only allows data consumers whose 
attributes satisfy the access policies to decrypt the data. In CP-ABE, the access policy is attached 
to the ciphertext in plaintext form, which may also leak some private information about end-users. 
The attribute values were partially hidden in the already existing systems, while the attribute 
names are still unprotected. In this paper, we propose access control scheme to big data using 
privacy preserving policy. Specifically, we hide the whole attribute (rather than only its values) in 
the access policies. To aid data decryption, we also design a novel attribute bloom filter to 
evaluate whether an attribute is in the access policy and locate the exact position in the access 
policy if it is in the access policy. Security analysis and performance evaluation show that our 
scheme can preserve the privacy from any linear secret-sharing schemes access policy without 
employing much overhead. 
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INTRODUCTION 
 
In big data, an immense and voluminous amount of data can be 
generated quickly (e.g., social networks, sensors, machines, 
smart phones,, etc.)., Conventional computer systems are not 
competent to store and process these big data. As cloud 
computing is flexible and elastic computing resources .Cloud 
computing is a natural fit for and processing big data [1], [2]. 
With cloud computing, end- users store their data into the 
cloud, and rely on the cloud server to share their data to other 
users (data consumers). In order to only share end-users’ data 
to authorized users, it is necessary to the requirements of end-
users. When outsourcing data into the cloud, end-users lose the 
physical control of their data. Moreover, cloud service idersare 
not fully-trusted by end-users, which makes the access control 
more challenging. For an instance, if the traditional access 
control mechanisms (e.g., access control lists) are applied, the 
cloud server becomes the judge to evaluate the access policy  
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and make access decision. Thus, end-users may worry that the 
cloud server may make wrong access decision intentionally or 
unintentionally, and disclose their data to some unauthorized 
users. In order to enable end-users to control the access of their 
own data, some attribute-based access control schemes [3]–[5] 
are proposed by leveraging attribute-based encryption [6], [7]. 
In attribute-based access control, end-users first define access 
policies for their data and encrypt the data under these access 
policies. Only the users whose attributes can satisfy the access 
policy are eligible to decrypt the data. The existing attribute-
based access control schemes can deal with the attribute 
revocation problem [3]–[5], they all suffer from one problem: 
the access policy may leak privacy. This is because the access 
policy is associated with the encrypted data in plaintext form. 
From the plaintext of access policy, the adversaries may obtain 
some privacy information about the end-user. For an instance, 
Alice encrypts her data to enable the “psychology doctor” to 
access. So, the access pol-icy may contain the attributes 
“psychology” and “doctor.” If anyone sees this data, although 
he/she may not be able to decrypt the data, he/she still can 
guess that Alice may suffer from some psychological 
problems, which leaks the privacy of Alice. 
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To prevent the privacy leakage from the access policy, a 
straight forward method is to hide the attributes in the access 
policy. However, when the attributes are hidden, not only the 
unauthorized users but also the authorized users cannot know 
which attributes are involved in the access policy, which 
makes the decryption a challenging problem. Due to this 
reason, existing methods [8]–[12] do not hide or anonymize 
the attributes. Instead, they only hide the values of each 
attribute by using wildcards [8], [9], hidden vector encryption 
[10].Hiding the values of attributes can somehow protect user 
privacy, but the attribute name may also leak private 
information. Most of these partially hidden policy schemes 
only support specific policy structures (e.g., AND-gates on 
multivalued attributes). In this paper, we aim to hide the whole 
attribute instead of only partially hiding the attribute values. 
Moreover, we do not restrict our method to some specific 
access structures. The basic idea is to express the access policy 
in linear secret- sharing scheme (LSSS) access structure (M, ñ) 
where M is a policy matrix and ñ matches each row Mi of the 
matrix M to an attribute [6], and hide the attributes by simply 
removing the attribute matching function ñ. Without the 
attribute matching function ñ, it is necessary to design an 
attribute localization algorithm to evaluate whether an attribute 
is in the access policy and if so find the correct position in the 
access policy. To this end, we further build a novel attribute 
bloom filter (ABF) to locate the attributes to the anonymous 
access policy, which can save a lot of storage overhead and 
computation cost especially for large attribute universe. 
 
Our contributions are summarized as follows. 
 
 We propose an access control scheme to big data using 

privacy preserving policy, where the whole attributes are 
hidden in the access policy rather than only the values of 
the attributes. 

 We also design a novel ABF to evaluate whether an 
attribute is in the access policy and locate the exact 
position in the access policy if it is in the access policy. 

 We further give the security proof and performance 
evaluation of our proposed scheme, which demonstrate that 
our scheme can preserve the privacy from any LSSS access 
policy without employing much overhead. 

 
Related Work 

 
In order to control the access of their own data stored on 
untrusted remote servers (e.g., cloud servers), the end-users 
have used encryption-based access control. It is a very 
effective method, where data are encrypted by end-users and 
only authorized users are given decryption keys. This can also 
prevent the data security during the transmission over wire-less 
networks which are vulnerable to many threats [13]–[15]. 
However, traditional public key (PK) encryption methods are 
not suitable for data encryption because it may produce 
multiple copies of ciphertext for the same data when there are 
many data consumers in the system. In order to cope with this 
issue, some attribute-based access control schemes [3], [5] are 
pro- posed by leveraging attribute-based encryption [6], which 
only produces one copy of ciphertext for each data and does 
not need to know how many intended data consumers during 
the data encryption. Moreover, once the cloud data are 
encrypted. Some searchable encryption algorithms [16], [17] 
are proposed to support search on encrypted cloud data. 
 

Toward this problem, some works [8]–[12], [18]–[21] have 
been proposed to hide the access policy. In [8], two con-struct 
ions are proposed to partially hide the access policy. However, 
the access policy only supports AND-gates on multivalued 
attributes with wildcards. Li et al. [9] followed this paper and 
hided the attribute value by using a hash value to denote the 
value of an attribute. Considering that [8] and [9] are 
selectively secure, Lai et al. [12] proposed a fully secure 
ciphertext-policy attribute-based encryption (CP-ABE) scheme 
with partial hidden access policy. However, this scheme is 
only restricted to a specific access policy (i.e., AND-gates with 
multivalued attributes with wildcards) as in [8] and [9]. To 
support more expressive access policy, Lai et al. [20] also 
proposed a method to hide attribute values in access policy 
expressed in LSSS structure. Besides, there are also some 
policy hiding schemes using hidden vector encryption [10] and 
inner product encryption [11]. However, all of these existing 
schemes can only partially hide the access policy (i.e., hiding 
the values of the attributes). The attribute names are not hidden 
in the access policy. 

 
Preliminaries 
 
Linear Secret-Sharing Schemes 
 
Definition 1 (LSSS [6]): A secret sharing schemeMover aset of 
parties P is called linear over Zp (p is a prime) if: the shares for 
each party form a vector over Zp; there exists a matrix A 
called the share-generating matrix for M. The matrix A has l 
rows and n columns. For =1,...,l, theith row ofAis labeled by a 
partyñ(i)[ñis a function from {1 ,...,}l to P]. When we consider 
the column vector v�=(s,r 2 , . . . , rn), where s∈Zpisthe 
secret to be shared and r 2 ,...,r∈nZp are randomlychosen, then 
Av is the vector of l shares of the secret s according to M. The 
share (Av)i belongs to party ñ(i). It is shown in [22] that every 
linear secret-sharing scheme according to the above definition 
also enjoys the linear recon-structing property, defined as 
follows: Suppose that M is an LSSS for access structure A. Let 
S∈A be an authorized set, and let I⊂{1,2 ,...,l} be defined as 
I= {i:ñ(i)∈S}. There exist constants {ùi∈ ∈Zp}i I such that if 
{ëi} are valid any secret s according to M, then ù ës. 
 
Furtherrmore,∈ these constants ùi can be =found in time 
polynomial in the shares of i Ii {} size of the share{-
}generating matrix A. For any unauthorized set, no such 
constants exist. 
 
Bilinear Pairing 
 
Let G1, G2 and GT be three multiplicative groups with the 
same prime order p. A bilinear mapping is a mapping eˆ :G1× 
G2→GTwith the following properties.  
 
Bilinearity: eˆ(ua,vb)=ˆe(u, v)abfor all u ∈ ∈G1, v G2and 
a,b∈Zp. 
 
Non-Degeneracy: There exist u ∈ ∈G1, v G2such that eˆ(u, 
v)≠I where I is the identity element ofGT. 
 
Computability: it can be computed efficiently. 
 
Bloom Filter: The bloom filter (BF) concept is a space-
efficient probabilistic data structure, which is used to test 
whether an element is a member of a set. Specifically, a BF 

22920                                                            Sriraksha et al. Access control scheme to big data using privacy preserving policy 
 



consists of a bit array of m bits and k independent hash 
functions defined as follows: 
 
hi : {0,1} *›→[1,m] 
 
for  1≤ I ≤ k 
 
Initially, all the positions of the array are set to 0. To add an 
element e to the set, the BF building algorithm computes all 
the position indices as h{i(e)i}[1∈,k] and sets the values at the 
corresponding positions in the bit array to 1. Fig. 1 gives an 
example of BF for set x,{y ,} where the values at positions 
indexed by h1(x), h2(x), h3(x), h1(y), h2(y), h3(y) are set to 1.  
 

 
 

Fig. 1. Example BF for set {x,y} 
 

To check whether a given element x belongs to the set S, the 
BF query algorithm computes all the hash values 
h{i(x)i}[∈1,k] to get k array positions. If any of the bits at 
these positions are 0, the element x is definitely not in the set. 
However, if all of the bits are 1, we can say the element x is 
probably belong to the set S. There is a possibility for some 
x/S, all of the bits at the corresponding positions of hi(x) are 1, 
which is called the false positive. For example, the element w 
in Fig. 1 is not in the set x,y but all the corresponding positions 
of hi(w) are 1. 
 
Decisional q-BDHE Assumption 
 
The decisional q-bilinear Diffie-Hellman exponent (Decisional 
q-BDHE) problem is defined as follows. Choose a group G of 
prime order p according to the security parameter ë. Let 
a,s∈Z�

p be chosen at random andg be a generator of G. Let gi 
denote gai . When given �y=(g,g1, . . . ,gq, ,gq+2, . . . ,g2q,gs), 
the adversary mustdistinguish eˆ(g,g)aq+1s∈GT from a random 
element R in GT . 
 
An algorithm B has advantage ‹ in solving decisional q- BDHE 
problem inGif 
 

.PrÓB .y�,T = eˆ(g,g)aq+1s Ó = 0Ó− PrBÓ,T = R) = 0 ≥o 
 
Definitions 
 
We will first describe the system model of big data storage and 
sharing. Then, we define our proposed big data access control 
scheme and its security model. 
 
Definition of System Architecture: Consider the big data 
access control system, as shown in Fig. 2. The system consists 
of five entities, namely cloud servers, attribute authority, end-
users, and data consumers. 

 
 

Fig. 2. System Architecture 
 

Cloud Servers: Cloud Servers are employed to store, share and 
process big data in the system. The cloud servers are managed 
by cloud service providers, who are not in the same trust 
domain as end-users. Thus, cloud servers cannot be trusted by 
end-users to enforce the access policy and make access 
decisions. We also assume that the cloud server cannot collude 
with any end-users or data consumers. 
 
Attribute Authority: The attribute authority manages allthe 
attributes in the system and assigns attributes chosen from the 
attribute space to end-users. It is also a key generation center, 
where the public parameters are generated. It also grants 
different access privileges to end-users by issuing secret keys 
according to their attributes. The attribute authority is assumed 
to be fully trusted in the system. 
 
End-User: End-users are the data owners/producers 
whooutsource their data into the cloud. They also would like to 
control the access of their data by encrypting the data with CP-
ABE. End-users are assumed to be honest in the system. 
 
Data Consumers: Data consumers request the data from cloud 
servers. Only when their attributes can satisfy the access 
policies of the data, data consumers can decrypt the data. 
However, data consumers may try to collude together to access 
some data that are not accessible individually. 
 
Definition of Our Scheme 
 
Definition 3: Our big data access control scheme consists of 
the following algorithms: Setup, KeyGen, Encrypt, and 
Decrypt. 
 

 Setup(1ë) → (PK, MSK): The setup algorithm takes 
asinput a security parameter ë. It outputs the PK and 
master secret key. 

 KeyGen(PK, MSK, S) → SK: The key 
generationalgorithm takes as inputs the PK, the master 
keyMSK and a set of attribute S. It outputs the 
corresponding secret key SK. 

 Encrypt(PK,  m,  (M,ñ))  →(CT,  ABF):  The  data 
encryption algorithms contains: data 
encryptionsubroutine Enc and ABF building subroutine 
ABFBuild. 

 Enc(PK,m,(M,ñ→)) CT: The data encryption 
subroutine takes as inputs the PK, the message m and 
access structure (M,ñ). It outputs a cipher-text 
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CT.ABFBuild(M,ñ)→ABF: The ABF building sub-
routine takes as input the access policy (M, ñ). It 
outputs the ABF. 

 Decrypt(M, ABF, PK, SK, CT) → m: The decryption 
algorithm consists of two subroutines: ABFQuery and 
Dec. 

 ABFQuery(S,ABF,PK)→ñ:Thej ABF query algorithm 
takes as inputs the attribute set S, the ABF and the PK. 
It outputs a reconstructed attribute mapping 
ñj=(r{ownum,att)}S, which shows the corresponding 
row number in the access matrix M for all the attributes 
att∈S. 

 Dec(SK,CT,(M,ñj))→m or⊥: The data decryp-tion 
algorithm takes as inputs the secret key SK, the 
ciphertext CT as well as the access matrix M and the 
reconstructed attribute mapping ñj. If the attributes can 
satisfy the access policy, it outputs the message m. 
Otherwise, it outputs⊥. 
 

Security Model definetion 
 
We consider the indistinguishability against selectively chosen 
plaintext attacks. It is based on the following game between an 
adversary A and a simulator B. 

 
 Init: The adversary cAhooses a challenge access 

structure(M�, ñ�), whereM�is anl�n�matr×ix, and 
ñ�maps eachrow of M� to an attribute. 

 Setup: The challenger runs the Setup algorithm and 
givesthe public parameters PK to the adversary A. 

 Phase 1: In this phase, the adversaryAissues queries 
forsecret keys related to some attributes Satt. 

 
If Satt satisfies (M∗, ñ∗), then abort. 

 
Otherwise, the simulator generates a secret key related to Satt 
for the adversary A. 

 
Challenge: The adversaryAsubmits two equal lengthmessages 
m0 and m1 toB. The simulator B randomly chooses b∈0{, 1 
}and encrypts mb under the challenge access structure 
(M�,ñ�). Finally it sends the generated challenge 
ciphertextCT� to the adversary. 
 

 Phase 2: Phase 2 is the same as Phase 1. 
 Guess: The adversary outputs a guessbjof b. 
 The advantage of A in this game is defined as 

Adv(A)=|Pr[bj = b] − 1/2|. 
 
Construction of the Proposed Scheme 
 
The construction of our big data access control is based on the 
CP-ABE in [6]. However, our access policy privacy pre- 
serving method can also be applied for any CP-ABE methods 
with LSSS structured access policies. According to the 
definition in Section IV-B, our big data access control scheme 
consists of four phases: 1) system setup; 2) key generation; 3) 
data encryption, and 4) data decryption. 
 
System Setup 
 
During the system setup phase, the attribute authority runs the 
Setup algorithm. Let U denote the attribute space in the 
system. Let G and GT be cyclic multiplicative groups of prime 

orderp, andˆe : G×G→GT be a bilinear map. Let Latt be the 
maximum bit length of attributes in the system. Let Lrownum 
be the maximum bit length of the row numbers of access 
matrix. Let LABF be the size of bit array of the ABF. Let k be 
the number of hash functions associated with the ABF. The 
attribute authority randomly chooses a generator g∈ G,á,a∈ 
Z�,  and U= |U | random group elements h1, h 2, . . . , h U 
∈G. It also generates k hash functionsH1(), H2(), . . . ,Hk()that 
maps an element to a position inthe range of [1,LABF]. 
 
The PK is published as 
 
PK = (g,eˆ(g,g)á, ga, Latt, Lrownum, LABF h1, h 2, . . . ,hU, 
H1(), H2(),. ..,Hk()•. 
 
The master secret key is set as MSK =gá. 
 
Key Generation: Each data consumer should register and 
authenticate to the attribute authority. If the data consumer is 
not legal, it aborts. Otherwise, the attribute authority will 
evaluate the role of the data consumer in the system and assign 
a set of attributes S chosen from the attribute spaceU1to this 
data consumer. Together with these attributes, the authority 
also generates a corresponding secret key for this data 
consumer by running the following algorithm. 
 
KeyGen(PK, MSK, S) → SK: The algorithm takes asinput the 
PK, the master key MSK and a set of attributes S. It computes 
. Σ 
K =gágat, L =gt, Kx=ht

xx∈S 
 
wheret∈Zp

� is chosen at random. Finally, the secret key is set 
as 
 
SK = (K, L,{Kx}x∈S, S•. 
 
Data Encryption 
 
Before outsourcing data into the cloud, end-users encrypt the 
data by running the Encrypt algorithm. It first calls the data 
encryption subroutine to encrypt the data into cipher-texts 
under access policies expressed in LSSS structure. Other 
access structure, such as Boolean Formulas and Threshold 
Gates, can also be transformed into LSSS structure. 
 
1) Enc(PK, m, (M,ñ)) → CT: The data encryption sub-
encryption secret s ∈ Z∗ randomly and  then selects A random 
vector í = (s, yp y ),  where y, . . . ,y are ∗ 2, . . . , n2n routine 
takes as inputs the PK, the message m and access structure 
(M,ñ). As shown in Fig. 3, M is an×l n access matrix and the 
injective function ñ maps rows of M to attributes. The 
algorithm first chooses an used to 1The attribute space should 
be large such that it would be time- consuming for cloud 
servers to exhaustively search the attribute space. 
 
Share the encryption secret s. For i=1 ,...,l, it calcu-
latesëi=Mií·,�where Mi is the vector corresponding to the ith 
row of M. Then, it outputs the ciphertext as 
 
In traditional attribute-based encryption scheme, the access 
policy (M,ñ) will be attached to the ciphertext CT. However, 
the access policy is in plaintext, which may leak some private 
information about the end-users. Based on our observation, the 
attributes are leaked from the attribute mapping function ñ. So, 
in order to prevent the privacy leakage, we remove this 
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attribute mapping function ñ. However, when ñ is removed, it 
becomes difficult for data consumers to decrypt the data, as 
they do not know which attributes are involved in the access 
policy. To cope with this problem, we propose an efficient 
attribute localization algorithm by utilizing the BF. However, 
traditional  BF  only  provides  the membership query for a 
large set, while our purpose goes further: we not only need to 
evaluate whether an attribute is in the access policy, but also 
need to locate the attribute to the precise row number  in  the  
access  matrix.   
 

 
 

Fig. 3. LSSS access policy and ABF 
 

 
 

Fig. 4.ë-bit Element of ABF with Lrownum-bit row number 
string and Latt(=ë−Lrownum)-bit attribute string 

 
Moreover,  due  to  the  false positive  property,  traditional  
BF  cannot  be  applied  for  the attribute localization. To this 
end, we employ a garbled BF [23] as the building block of our 
attribute localization algorithm (ABF). Instead of using an 
array of bits in traditional BF, the garbled BF uses an array of 
ë-bit, where ë is the security parameter. Different from the 
traditional BF, the false positive probability is much lower, 
because it not only depends on the collision probability of hash 
functions, but also depends on the probability of string 
matching. Although the garbled BF achieves much lower false 
positive, it is still designed for membership query only. In to 
precisely locate attributes to the corresponding row number in 
the access matrix, we employ a specific string as the element 
of the garbled BF. As shown in Fig. 4, the element is a 
concatenation of two fixed length strings: one string rep-
resents the row number with Lrownum-bit, and the other string 
represents the attribute with the bit length of Latt-bit, where 
 
LrownumL+attë.= 
 
 

When the data encryption is finished, the end-users then build 
the ABF by running the following subroutine. 
 
1) ABFBuild(M,ñ)→ABF: The ABF building 
subroutinetakes as input the access policy (M,ñ). It first binds 
the attributes involved in the access policy and its 
corresponding row number in the access matrix M together 
and obtains a set of elem=en{t|s|Se}∈iatte i [1,l], where the i-
th row of the access matrix maps to the attrib=uteatteñ(i). Both 
of the row number i and the attribute atte are expanded to the 
maximum bit length by filling with zeros on the left of the bit 
strings. By taking the set of elements Se as an input, the ABF 
can be constructed by calling the garbled BF Building 
algorithm in [23]. To add an element e in the set Se to the 
ABF, the algo- rithm first shares the element e with (k,k) secret 
sharing scheme by randomly generating k− 1 ë-bit strings r1,e, 
r2,e,. . . , rk−1,e, and setting rk,e= r1,e � r2,e ···� rk−1,e � e. 
 
Then, it hashes the attribute atte associated with the element e 
with k independent and unified hash functions H1(), . . .  
,Hk()and gets H1(atte), H2(atte),...,Hk(atte) ‘r1,e→ 
H1(atte)position in ABF. rk,e→Hk(atte)position in ABF. 
 
When we continue to add elements to the ABF, some location 
j=Hi(e) may have been occupied by a previously added 
element. If such situation happens, we reuse this existing share 
as one share of the new element. For example, as shown in 
Fig. 5, the position Hj(atte2)of element e2is the same as the 
position Hi(atte1)of element e1. Considering that this position 
of the ABF has already been occupied by ri,e1 , instead of ë-bit 
string, we setrj,e2r=i,e1 . If we change this positionwith 
another string, the previously inserted element cannot be 
recovered. 
 

 
 

Fig. 5. Example of ABF 
 

 
 

Fig. 6. String abstraction from the element 
 

Algorithm 1 ABFBuild 
 

Input: An LSSS access policy(M, ñ),ë,LABF 
Input:  khash  functions{H1(), ···  ,}Hk() 
Output: ABF 
 
1:Generate an element set Se from the access policy (M, ñ) 
2:ABF = new LABF element array of bit strings 
3:for i=0 toLABF−1 do 
4:ABF[i]=NULLdInitialize the ABF with“NULL” 
5:for each elemente=i||atte∈Se do  
6: emptyPos= −1,finalShare= x  

22923                                  International Journal of Development Research, Vol. 08, Issue, 09, pp. 22919-22926, September, 2018 
 



7: for i=0 tok−1 do    
8: j = Hi+1(atte) d get the index of the position  
9: if ABF[j]==NULL then  
10: if emptyPos==− 1 then  
11: d reserve this position for the finalShare  
12: emptyPos = j d generate a new share  
13: else    
14: generate a random string rj,e with ë bits  
15: ABF[ j]=rj,e   
16: finalShare=finalShare⊕ ABF[ j]  
17: else  d reuse an existing share  
18: finalShare=finalShare⊕ ABF[ j]  
19: ABF[emptyPos] = finalShare  
20:  fori= 0 to LABF 1−do    
21: if ABF[i]==NULL then  
22: d fill the empty position with random strings 
23: generate a random string ri with ë bits 
 
The entire ABF building algorithm is shown in Algorithm 1. 
Finally, the end-users will outsource the data in the form of 
(CT, M, ABF) to cloud servers. 
 
Data Decryption 
 
When accessing the data stored in the cloud, data consumers 
can download the encrypted data according to their interests. 
However, the access control happens during the decryption, 
which means that data consumers can decrypt the data only 
when their attributes can satisfy the access policies used to 
encrypt the data. In traditional ABE systems, the access pol-
icy (M,ñ) is attached to the ciphertext. So, the data consumers 
can easily check whether their attributes can satisfy the access 
policy. However, in our scheme, we hide the attributes map-
ping function ñ, so data consumers should first check which 
attributes they owned are in the access matrix by running the 
ABF query subroutine as follows. 
 
1) ABFQuery(S,ABF,PK) →ñj: It takes as inputs theattribute 
set S, the ABF and the PK. For each attribute att∈S owned by 
the data consumer, the algorithm first computes the position 
indices by feeding the attribute att with the k hash functions 
H1 (),...,Hk() and gets H1(att), H2(att),...,Hk(att). 
 
Then, it fetches the corresponding strings from theposi-tions 
indexed by H(att) (i∈ [1,k]) in the ABF as I follows: 
 
H1(att)position in ABF→ r1,e 
 
Hk(att)position in ABF→rk,e. 
 
After that, it reconstructs the element e as e = r1,e⊕r2,e⊕ · · · 
⊕rk−1,e⊕ 
 
rk,e = r1,e ⊕ r2,e ⊕· · ·⊕ rk−1,e ⊕ r1,e ⊕r2,e ⊕ ··· ⊕ rk−1,e 
⊕ e. 
 
Note that the element e is in the format of e= |i| atteas shown in 
Fig. 4. Then, it takes the last Latt bits from the string e, and 
removes all the zero bits on the left of the string to obtain the 
string atte. As shown in Fig. 6, if atte is the same as the 
attribute att, we say that this attribute att is in the access 
matrix. Then, it obtains the first Lrownum bits from the string 
e to obtain the corre-sponding row number by removing all the 
zero bits at the left as well. Otherwise, atte is not the same as 
the attribute att, it means that the attribute att does not exist in 

the access policy. Finally, it outputs the reconstructed attribute 
mapping as which shows the corresponding row number in the 
access matrix M. The ABF query algorithm is shown in 
Algorithm 2. 
 
ñj= {(rownum, att)}att∈S 
 
When obtaining the access policy (M, ñ), the data consumer 
can run the data decryption subroutine as in traditional 
attribute-based encryption systems. 
 
Dec(SK, CT, (M,ñj)) → m or⊥: The data decryptionalgorithm 
takes as inputs the secret key SK, the ciphertextCT as well as 
the access matrix M and the reconstructed attribute mapping 
ñj. If the attributes can satisfy the access policy, it can leverage 
the Lagrange Interpolation Formula to find coefficients 
{ci|i∈I} such that_i∈Iciλi= s, where I = {i : ρ(i) ∈S} ⊂ {1, 2, . 
. . ,l}. recover the data as m = C/ˆe(g, g)αs. Otherwise, it 
outputs⊥to denote that the decryption fails. 
 
Algorithm 2 ABFQuery 
 
Input: An Attribute Bloom FilterABF, a set of attributesS 
Input: khash functions{H1(),•••,Hk()} 
Input: Maximum attribute string lengthLatt 
Input: Maximum row number string lengthLrownum 
Output: ñj= {(rownum,att)}att∈S 
 
a) for eachatt∈S do 
b) ReStr= {0}ë d initialize the reconstructed string 
c) for i=0 tok−1 do 
d) j= Hi+1(att) d get the index of the position 
e) ReStr=ReStr⊕ ABF[j] 
f) atteStr=LSBLatt(ReStr) 
g) d get Lattleast significant bits 
h) atte=RmLeadingZeroBits(atteStr) 
i) d remove all the leading zero bits 
j) if atte==att then 
k) rownumStr= MSBLrownum(ReStr) 
l) get Lrownum most signdificant bits 
m) rownum= RmLeadingZeroBits(rownumStr) 
n) remove all the leadindg zero bits 
o) Add(rownum, att)intoñ j 
 
Analysis of Our Scheme 
 
Security Analysis 
 
Theorem 1: No polynomial time adversary can 
selectivelybreak our big data access control scheme with an 
l∗n×∗(n∗q)ch≤allenge access matrix, under the decisional q-
BDHEassumption. 
 
Proof: Our big data access control scheme is constructedon 
top of the attribute-based encryption scheme in [6], which is 
proved to be selective secure against the chosen plaintext 
attacks under the decisional q-BDHE assumption. It is shown 
in [6] that if there is an adv Aersary with non-negligible 
advanta=ge‹Adv in the selective security game (which is the 
A same as the security game defined in Section IV-C), they can 
build a simulator B that solves the decisional q-BDHE problem 
with non-negligible advantages. Similarly, to prove the 
security of our big data access control scheme, we show that if 
there is an adversary Ay with non-negligible  
advantage‹=AdvAin the  selective  security game, we can build 
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a simulator jtBhat also solves the decisional q-BDHE problem 
with non-negligible advantages. The construction of Bj is 
similar to the simulator B in [6]. The Init phase in the Bj is the 
same as the one in the B. In the Setup j phase, besides the steps 
from B, The secret key query phases569 are also the same, 
which means that Bj.Phase1 =B.Phase1 and Bj.Phase2 
=B.Phase2. The differences are in the Challenge phase: the 
encryption algorithm in Bj consists of two subroutines. To 
simulate the ABF building subroutine, the simulator Bj queries 
from the ABF Build oracle. As for the data encryption 
subroutine, Bj.Enc=B.Encrypt. Because the challenge matrix is 
selected by the adversary before the Initphase, so the 
constructed ABF is the same no matterwhich plaintext is 
selected for encryption, which means that the ABF will not 
increase the advantages of the adversary iAn the security game. 
Similar to the proof in [6], we can show that Bj plays the q-
BDHE problem with non-negligible advantages. 
 
Theorem 2: Our big data access control scheme is privacy-
preserving against the adversaries with polynomial time in the 
security parameter ë. 
 
Proof: In our scheme, only the data consumers whohold the 
attributes can obtain the string of attribute from the attribute 
space U. Adversaries who have no knowledge about the 
attribute string cannot launch the brute force attack to guess 
the attribute string within polynomial time. So, they cannot 
obtain the private information from the access policy 
consisting of the matrix M and the ABF. 
 
Data consumers are only allowed to check whether their 
owned attributes are in the access policy. Unless the data 
consumer has all the attributes of the attribute space or several 
data consumers collude together, they cannot check all the 
attributes from the attribute space in the system. Since the 
ABF is constructed with a garbled BF where ë-bit strings are 
embedded into the BF, the false positive probability of the ë. 
ABF can be reduced to (1/2 ). 
 
Performance Analysis: To resist the privacy leakage from the 
access policy, we employ an ABF to enable data consumers to 
locate the position of attributes in the access policy. 
Specifically, the ABF building algorithm is added during the 
data encryption and the ABF query algorithm is added during 
the data decryption. In order to show how much computation 
overhead incurred by the ABF, we do the experiment on a 
Unix system with an Intel Core i5 CPU at 2.4 GHz and 8.00 
GB RAM. The code uses the pairing-based cryptography 
library version 0.5.12, and a symmetric elliptic curve á-curve, 
where the base field size is 512-bit and the embedding degree 
is 2, such that the security parameter is equal to 1024-bit. To 
implement the ABF, we employ the MurmurHash created by 
Austin Appleby in 2008.2 All the experimental results are the 
mean of 20 trials. Fig. 7(a) shows the encryption time versus 
the number of attributes involved in the access policy. The 
traditional ABE line in Fig. 7(a) is the implementation of the 
ABE without privacy-preserving policy from the [6]. The 
encryption time in our scheme consists of both ABF building 
and data encryption. The lines of our scheme in this figure 
apply eight hash functions and 16 hash functions to build ABF, 
respectively. Fig. 7(b) shows the decryption time versus the 
number of attributes involved in the decryption. The 
decryption time in our scheme consists of both the ABF query 
time and data decryption time. The attribute number here also 
means how many attributes are tested by running the ABF 

query algorithm. Therefore, our scheme can preserve the 
privacy of the access policy without increasing much 
computation overhead for both data encryption on end-users 
and data decryption on data consumers. 
 

 
 

 
 

Fig. 7. Computation time comparison between the ABE in [6] and 
our scheme (data size: 1 KB, security parameter: 1024). (a) Data 

encryption. (b) Datadecryption. 
 

Conclusion 
 
In this paper, an efficient and fine-grained data access control 
scheme for big data, where the access pol- icy will not leak 
any privacy information. Different from the existing methods 
which only partially hide the attribute values in the access 
policies, our method can hide the whole attribute (rather than 
only its values) in the access policies. However, this may lead 
to great challenges and difficulties for legal data consumers to 
decrypt data. To cope with this problem, we have also 
designed an attribute localization algorithm to evaluate 
whether an attribute is in the access policy. In order to improve 
the efficiency, a novel ABF has been designed to locate the 
precise row numbers of attributes in the access matrix. We 
have also demonstrated that our scheme is selectively secure 
against chosen plaintext attacks. Moreover, we have 
implemented the ABF by using MurmurHash and the access 
control scheme to show that our scheme can preserve the 
privacy from any LSSS access policy without employing much 
overhead. In our future work, we will focus on how to deal 
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with the offline attribute guessing attack that check the 
guessing “attribute strings” by continually querying the ABF. 
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