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ARTICLE INFO  ABSTRACT 
 
 

In this work we present an analytical solution for the time-dependent three-dimensional 
advection-diffusion equation to simulate the pollutant dispersion in the Planetary Boundary Layer 
(PBL). In this new approach the advection-diffusion equation is solved using a combination of the 
separation of variables and GILTT methods. The great advantage is that, by this way, we avoid 
the numerical inversion done in the previous works in literature using the GILTT method. We 
also report numerical simulations and statistical comparison with experimental data available in 
the literature. 
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INTRODUCTION 
 
During decades, great attention has been devoted to solve analytically the advection-diffusion equation with the purpose to 
simulate pollutant dispersion in atmosphere in a more realistic manner. A variety of solutions appeared in literature during these 
researches, but, in majority, the solutions are for very specific cases, considering constant or simple eddy diffusivities coefficients 
for example (Moreira et al., 2009). More recently, appeared the GILTT method which solves the time-dependent multidimensional 
advection-diffusion equation (Wortmann et al., 2005; Moreira et al., 2006; Moreira et al., 2009; Buske et al., 2012a, 2012b, 2016; 
Vilhena et al., 2012), assuming variable wind and eddy diffusivity coefficient.  
 
The main idea of this methodology relies on the solution of the classical GITT transformed equations (Cotta and Mikhaylov, 1997) 
analytically, by the Laplace Transform technique. The time-dependent advection-diffusion equation is solved applying the Laplace 
Transform technique in the time variable (Moreira et al., 2006) and the stationary resulting equation is solved by the GILTT 
method. The final concentration is obtained by numerical inversion in time using Gaussian quadrature. In this work we step 
further, now solving the three-dimensional nonstationary advection-diffusion equation avoiding the numerical inversion done in 
the previous works in literature using the GILTT method. Such solution is obtained through a combination of the separation of 
variables and GILTT methods. The great advantage is that, by this way, we obtain the final pollutant concentration much faster. 
This paper is organized as follows: in section 2, we present the solution proposed for the advection-diffusion equation; in section  
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3, we briefly report the data set and parameterization considered in the simulations; in section 4, numerical simulations and 
statistical comparison with experimental data and with models available at literature are shown and discussed. Finally, in section 5, 
an analysis of the methodology proposed is done.  
 
Solution of the advection-diffusion equation 
 
The three-dimensional advection-diffusion equation, considering Fickian closure of turbulence, which describes, without loss of 
generality, the pollutant dispersion in the atmosphere, written as 
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where  zyxtC ,,,  denotes the function concentration (kg/m3), yK  is the lateral eddy diffusivity (m2/s), )(zKK zz   is the vertical 

eddy diffusivity coefficient (m2/s), u  is the longitudinal mean wind component oriented in the x direction (m/s). 
 
Equation (1) is subjected to the following boundary conditions 
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initial condition, 
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and the source condition 
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where h (m) is the boundary layer height, Hs (m) the source height and Q (g/m2) is the source intensity. 
 
Proceeding with the variable separation of the differential equation (1), considering initially that u e yK  are constant,  
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where eigenvalues are presented in a more convenient form. By this way the solution for equation (3.a) is given by 
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the solution for equation (3.b) is 
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and solution for equation (3.c) is 
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The solution for equation (3.d) is obtained by the well-known GILTT method (Moreira et al., 2009; Buske et al., 2012a).  
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Finally, the problem solution is given in a product form like 
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Looking each factor of equation (7) separately, using equations (4)-(6), is possible to write  
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where )()(),( zGILTTxzx   . By this way, equation (7) is rewritten as 
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Once the domain is infinite in x and y the eigenvalues are continuous, the solution for the concentration C is given by:  
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and once the eigenvalues  (m) and (1/s) are considered continuous in ),0[  , the final concentration is expressed as 
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To determine the functions ),( yt  and ),( xt  the initial and source conditions are used. The function ),( zxGILTT  comes from 

the solution obtained by the GILTT method (Moreira et al., 2009; Buske et al., 2012a). The development to determine ),( yt  and 
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Taking only the term related to the integral that composes the solution, using equation (8), 
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Is possible to note, from equation (15), that  yt,  can be written as a Fourier Cosines transform, more exactly like: 
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integrating this condition in the variable y,  
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Again, taking only the term related to the integral that composes the solution, using equation (09), 
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By considering the source condition at x = 0, 




0

)()0,(   deBt t , and then applying the inverse of Laplace transform, the 

constants )(B  are determined and given by  
 

   







 














u

x
tQdettQLxt u

x
t

0

1 ,),( 


                                                                      …………………………….. (21) 

 
Finally, the solution will be the product of equations (17), (21) and the GILTT solution, that is 
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The idea to obtain the solution of GILTT(x,z), briefly speaking, comprehends the steps: expansion of the concentration in series of 
eigenfunctions attained from an auxiliary problem, replacing this equation in the advection-diffusion equation and taking 
moments, one comes out with a matrix ordinary differential equation that is then solved analytically by the Laplace Transform 
technique. For more information see the works of Wortmann et al. (2005), Moreira et al. (2006, 2009), Buske et al. (2012a, 2012b, 
2016). 
 
Analytical Solution – Plume Solution 
 
It is important to emphasize that the solution using a Dirac delta function source is a Green’s solution. This means that by knowing 
Green's solution, we can find solutions with different forms of time-dependent sources through the superposition principle for 

linear operator problems. For this, the Dirac delta source will be of the form )(  t . If a function strongly concentrated with the 
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In order to allow the solution to consider the diffusion process in the longitudinal direction, the limit is relaxed for Kx . Thus, 
through equation (23), the Green solution is written as: 
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At this point, if is considered a problem with arbitrary source )(tQ  emitting at an interval ),( 0 tt , the solution to the problem 

through the superposition principle is given by  integration over interval ],[ 0 tt . In a particular case, the plume solution can 

be constructed using the Heaviside function as the source: 
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where QdM   is the mass released in time interval t and 0t  is equal to zero.  
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in which erf is the error function. 

 
Boundary Layer Parameterization 
 
With the purpose of comparison with results of the literature, the boundary layer parameterization was chosen as the same adopted 
by the authors Moreira et al. (2006, 2009), Buske et al. (2012a, 2012b, 2016). In terms of the convective scaling parameters the 
vertical eddy diffusivity can be formulated as (Degrazia et al., 1997): 
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For the lateral eddy diffusivities, a formulation given by Seinfeld and Pandis (1998) was used: 
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where α represents x and y directions respectively. 
 
The wind speed profile can be described by a power law expressed as follows (Panofsky and Dutton, 1988): 
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where uz and u1 are the mean wind speeds horizontal to heights z and z1 and n is an exponent that is related to the intensity of 
turbulence (Irwin, 1979). Here, for the unstable case studied, n=0.1 was adopted. 
 
Numerical Simulations 
 
The performance of the new approach was evaluated with the boundary layer parameterization proposed, using the crosswind 
integrated equation (26) and the data set of the diffusion Copenhagen experiment (Gryning and Lyck, 1984). The Copenhagen data 
set is composed of tracer SF6 data from dispersion experiments carried out in northern Copenhagen. The tracer was released 
without buoyancy from a tower at a height of 115 m and was collected at ground-level positions in up to three crosswind arcs of 
tracer sampling units. The sampling units were positioned 2-6 km far from the point of release. Tracer releases typically started up 
1 hour before the tracer sampling and stopped at the end of the sampling period. The site was mainly residential with a roughness 
length of 0.6 m. In this work two situations were considered in the analysis of the results obtained using the Copenhagen data set. 
First, were used the values of the ground-level crosswind integrated concentrations normalized with the tracer release rate from 
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Gryning et al. (1987). In this case the distributed data set contains hourly mean values of concentrations and meteorological data. 
Second, data with a greater time resolution were considered as suggested by Tirabassi and Rizza (1997): 20 minutes averaged 
measured concentrations and 10 minutes averaged values for meteorological data. Tables 1, 2 and 3 report the friction velocity *u

, the Monin-Obukhov length L and boundary layer height h, respectively, used in the simulations. To calculate the vertical velocity 
w*, the relation 1/ 3

* * ( )w u h kL   was used. It is important to observe that data for experiment 6, with greater resolution, are not 

available in literature.  
 

Table 1. Friction velocity (m/s) for the different runs and time steps of the Copenhagen experiment. Every  
time step corresponds at 10 minutes 

 

Run 
Time step 

1 2 3 4 5 7 8 9 

1 .36 .68 .46 .56 .58 .48 .65 .72 
2 .37 .67 .45 .51 .52 .48 .79 .73 
3 .40 .81 .47 .37 .51 .57 .67 .60 
4 .43 .68 .39 .44 .58 .62 .67 .59 
5 .35 .75 .39 .48 .59 .53 .68 .65 
6 .34 .74 .40 .48 .52 .65 .65 .71 
7 .42 .76 .40 .39 .52 .63 .68 .73 
8 .43 .82 .41 .40 .45 .65 .67 .73 
9 .40 .76 .31 .39 .44 .66 .73 .73 
10 .37 .73 .34 .39 .44 .62 .73 .66 
11 .35 .69 .39 .39 .44 .52 .75 .67 
12 .36 .66 .40 .39 .43 .62 .69 .74 

 
Table 2. Monin-Obukhov length (m) for the different runs and time steps of the Copenhagen experiment. 

 Every time step corresponds at 10 minutes 
 

RUN 
TIME STEP 

1 2 3 4 5 7 8 9 

1 -26 -178 -152 -75 -492 -71 -71 -793 
2 -23 -227 -194 -42 -215 -80 -85 -471 
3 -83 -311 -106 -23 -368 -64 -47 -202 
4 -42 -160 -101 -32 -735 -111 -49 -366 
5 -36 -203 -129 -71 -366 -177 -45 -633 
6 -42 -286 -70 -80 -273 -67 -63 -13588 
7 -47 -155 -83 -83 -273 -87 -41 -593 
8 -38 -228 -60 -101 -262 -71 -47 -471 
9 -83 -184 -106 -129 -395 -56 -70 -389 
10 -21 -389 -42 -129 -395 -111 -64 -375 
11 -32 -133 -101 -129 -395 -215 -52 -262 
12 -29 -375 -70 -129 -759 -123 -39 -252 

 
In Figure 1 the observed and predicted scatter diagram is shown. The dash lines indicate that the data are between a factor of two. 
Both situations, hourly mean values of concentrations and meteorological data, and 20 minutes averaged measured concentrations 
and 10 minutes averaged values for meteorological data are depicted. 
 

 
 

Figure 1. Observed (Co) and predicted (Cp) scatter diagram of crosswind ground-level concentrations using the data of Copenhagen 
experiment, for the two-dimensional case. At left, data set contains hourly mean values of concentrations and meteorological data. At 
right, data set with 20 minutes averaged measured concentrations and 10 minutes averaged values for meteorological data. Lines 
indicate a factor of two 
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Table 3. Boundary layer height for the different runs of the Copenhagen experiment 
 

RUN 1 2 3 4 5 7 8 9 

h (m) 1980 1920 1120 390 820 1850 810 2090 

 

The figure shows that a reasonable agreement is obtained between the experimental data and the new approach. At Table 4 are 
presented the crosswind ground-level concentrations using the data of Copenhagen experiment, for the two-dimensional case. Data 
set contains hourly mean values of concentrations and meteorological data. The present model is compared with results presented 
at Buske et al. (2016) by the GILTT method. Statistical comparisons with other methods for the Copenhagen experiment are 
presented in Table 5. All the models solve the two-dimensional nonstationary advection-diffusion equation and make use of the 
same parameterizations and experimental data. The GILTT method solves the problem applying the Laplace Transform technique 
in the time variable (Moreira et al., 2006, 2009) and the resulting stationary equation is solved analytically by integral transforms.  
 

Table 4. Observed (Co) and predicted (Cp) crosswind ground-level concentrations using the data of Copenhagen experiment. Data set 
contains hourly mean values of concentrations and meteorological data.  The present model is compared with results presented at Buske 

et al. (2016). The concentrations are normalized by the emission rate 
 

Expt Distance (m) Co Cp1 - present Cp2 - GILTT 

1 1900 6.48 5.47 7.66 
 3700 2.31 3.77 4.35 
2 2100 5.38 3.84 5.05 
 4200 2.95 2.96 3.41 
3 1900 8.2 7.37 8.96 
 3700 6.22 5.16 5.62 
 5400 4.3 3.98 4.15 
4 4000 11.66 9.24 9.47 
5 2100 6.72 8.49 9.38 
 4200 5.84 6.71 7.37 
 6100 4.97 5.39 5.75 
7 2000 6.7 3.72 5.09 
 4100 3.25 2.63 3.06 
 5300 2.23 2.2 2.46 
8 1900 4.16 4.26 5.12 
 3600 2.02 3.23 3.45 
 5300 1.25 2.62 2.72 
9 2100 4.58 3.6 4.83 
 4200 3.11 2.8 3.26 
 6000 2.59 2.18 2.46 

 

Table 5. Statistical comparison between two-dimensional models results, considering hourly mean  
values of concentrations and meteorological data 

 

model nmse cor fa2 fb fs 

Present 0.07 0.87 1 0.06 0.19 
GILTT 0.06 0.89 1 -0.08 0.09 
ADMM 0.15 0.81 0.95 0.18 0.38 
M4PUFF 0.21 0.74 0.9 0.1 0.45 

 
Table 6.  Crosswind integrated ground-level concentrations, for the three periods of 20 minutes of the second hour pollutant measure of 

Copenhagen experiment. Co represents the experimental observed concentrations, Cp1 the predicted concentrations for the present 
model and Cp2 the concentrations obtained by the GILTT method (Buske et al., 2016).  

The concentrations are normalized by the emission rate. 
 

   Period I   Period II   Period III   

Expt Distance  Co Cp1 - present Cp2 - GILTT Co Cp1 - present Cp2 - GILTT Co Cp1 - present Cp2 - GILTT 

1 1900 5.6 5.84 7.73 8.27 5.66 7.66 5.51 5.5 7.59 
 3700 1.74 3.77 4.29 2.25 3.82 4.37 3.02 3.78 4.38 
2 2100 4.36 4.1 5.12 3.97 3.97 5.04 6.73 3.87 5 
 4200 2.72 3.02 3.44 1.96 3 3.41 4.2 2.97 3.37 
3 1900 6 7.74 9.05 9.26 7.57 8.96 9.32 7.41 8.87 
 3700 4.7 5.19 5.59 6.53 5.18 5.64 7.62 5.17 5.64 
 5400 3.93 3.93 4.07 5.24 3.98 4.17 4.01 3.98 4.21 
4 4000 6.26 9.24 9.44 9.97 9.24 9.48 17.37 9.24 9.48 
5 2100 5.78 8.57 9.48 8.62 8.54 9.38 5.89 8.5 9.27 
 4200 5.09 6.72 7.35 6.55 6.72 7.39 5.91 6.72 7.37 
 6100 5.07 5.39 5.64 5.37 5.39 5.78 4.65 5.39 5.82 
7 2000 2.72 3.98 5.16 12.74 3.85 5.09 5.25 3.74 5.03 
 4100 2.31 2.71 3.08 1.34 2.68 3.06 2.42 2.64 3.03 
 5300 2.45 2.23 2.46 0.64 2.22 2.46 1.49 2.2 2.45 
8 1900 4 4.51 5.16 4.84 4.39 5.12 3.65 4.29 5.07 
 3600 2.31 3.27 3.47 1.34 3.25 3.45 2.42 3.24 3.43 
 5300 2.45 2.63 2.72 0.64 2.63 2.72 1.49 2.62 2.71 
9 2100 3.98 3.86 4.9 3.93 3.73 4.83 5.9 3.63 4.77 
 4200 3.46 2.88 3.29 2.44 2.84 3.26 3.4 2.81 3.22 
 6000 3.96 2.19 2.46 2.04 2.19 2.46 1.76 2.18 2.44 
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Table 7. Statistical comparison between two-dimensional models results, considering periods of 20 
 minutes average pollutant concentration 

 

Model NMSE COR fa2 fb fs 

Present 0.2 0.73 0.92 0.03 0.38 
GILTT 0.17 0.75 0.9 -0.1 0.28 

 
The final concentration is obtained by numerical inversion in time. The ADMM model of Moreira et al. (2005) is obtained by a 
Laplace Transform technique with numerical inversion considering the PBL as a multilayer system where in each layer the eddy 
diffusivity and wind are constants. The M4PUFF model (Tirabassi and Rizza, 1997) is based on a general technique for solving 
the K-equation, using the truncated Gram-Charlier expansion of the concentration field and finite set equations for the 
corresponding moments. The statistical indices (Hanna, 1989; Chang and Hanna, 2004) in Table 5 point out that these models 
simulate satisfactorily the observed concentrations, regarding the nmse (normalised mean square error), fb (fractional bias) and fs 
(fractional standard deviation) values relatively near to zero and cor (correlation coefficient) and fa2 (factor of two) relatively near 
to 1. Table 5 also permits to stress that the new model and the GILTT results present similar values for nmse, cor and fa2.The 
great advantage here is the avoid of the numerical inversion in time from the previous works, which allows us to obtain the final 
result much faster. Running both models together, in a simple i5 notebook of 64 bits, for n=100 eigenvalues, the complete results 
of tables 4 and 5 were obtained with the new model until only the result for one distance was obtained for the GILTT method with 
numerical inversion.  Table 6 present the crosswind integrated ground-level concentrations, for the three periods of 20 minutes of 
the second hour pollutant measure of Copenhagen experiment. The present model is compared with results presented at Buske et 
al. (2016) by the GILTT method. The concentrations are normalized by the emission rate. Table 7 again permits to stress that the 
new model and the GILTT results present similar values for nmse, cor and fa2, showing the similarity between the models, except 
for numerical inversion and computational time. 

 
Conclusions 
 
We begin our final analysis of the proposed method, underlining that the reported solution is analytical, in the sense no 
appoximation is made along the solution derivation except for the round-off error. The concentration can be evaluated at any time 
due the analytical shape of the solution and as a consequence, this methodology demands less computational effort. The 
consistency here is shown by comparison with crosswind integrated experimental data and the very good results attained, under 
statistical point of view, must be emphasized. Moreover, the analytical character and simplicity of the solution, reinforces that the 
proposed method is a robust and promising method to simulate pollutant dispersion in atmosphere. The focus of the future works 
will be on extend this investigation to simulate centerline concentrations, as well as investigate other scenarios of interest to the 
area.  
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