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INTRODUCTION

Fuzzy differential equations naturally represent dynamical systems with uncertainty. Therefore, this theory has an important role
in science and engineering. Dubois and Prade introduced the concept of fuzzy derivative using the extension principle in (Abu
Arqub, 2013). Kaleva (Kaleva, 1987) and Seikkala (Seikkala, 1987), then formulated Fuzzy differential equations in time
dependent form. In (Liao, 1992), Liao used the basic ideas of homotopy in topological concept to offer an analytic method for
nonlinear problems [15-18]. Fuzzy Initial Value Problems (FIVPs) may not always have solutions which can be obtained via
analytical methods. Because of this difficulty, numerical methods are used to approximate the solutions of such problems. (Abu
Arqub, 2013). Numerical methods have been succesfully applied to some fuzzy differential equations provided that the necessary
conditions are satisfied. The numerical solvability of fuzzy differential equations can be found in (Abu Arqub, 2013; Abu Arqub,
1903; Abbasbandy, 2002; Abbasbandy, 2006; Allahviranloo, 2009; Babolian, 2004; Effati, 2010; Ma, 1999; Ch. Palligkinis, 2009;
Shokri, 2007; Rabie, 2013) and references therein. In this paper we present explicitly numerical approximation steps to the
solution of a FIVP via Euler method, homotopy analysis method (HAM), and Adomian decomposition method (ADM) algorithms,
and compare the numerical results obtained.

Preliminaries
In this section, we introduce some necessary definitions and preliminary results from fuzzy calculus theory. We will utilize

Hukuhara differentiability for the concept of fuzzy derivative.
Let X # @ be a set. A fuzzy set u in X is characterized by its membership function u: X — [0,1].
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Definition (Goetschel, 1986 and Kaleva, 1987), A fuzzy number u is a fuzzy subset of the real line with a convex, normal, and
upper semicontinuous membership function of bounded support.

The set of all fuzzy numbers is denoted by E?.

Definition (Ebadian, 2017) For any u € E the r -cut set of u is denoted by [u], and defined by [u],={x; : w,(x) =1, xeX I3
where 0 < r < 1. The notation [u], = [u,u,], 0 < a < 1 refers to the lower and upper branches on u. Alternatively
definition of fuzzy numbers can be given in the parametric form as follows:

Definition (Kaleva, 1987) An arbitrary fuzzy number u in parametric form is an ordered pair of functions (u(r),u(r)),0 <r <
1, which satisfy the following three conditions:

(i) u(r) is a bounded monoton increasing left continuous function on (0,1] and right continuous at 0.
(ii) u(r) is a bounded monoton decreasing left continuous function on (0,1] and right continuous at 0.
(i) u(r) <u@), 0<r<1.

There are a few derivative varieties in the study of fuzzy differential equations:

e Hukuhara differentiability
o Seikkala differentiability
e Strongly generalized differentiability

In this paper we consider Hukuhara differentiability. The differentiability in the sense of Hukuhara (H-derivative) for fuzzy
functions are based on the H-difference of sets.

Definition [9] Let F: [a, b] » F,(R™). Let x,y € Rp be two fuzzy numbers. If there exists a fuzzy number z € R such that
x =y + z then z is called Hukuhara difference (H-difference) of x and y, and it is denoted by z = x@yy.

Definition [23] Let F:[a,b] —» F,(R™). If for sufficiently small h>0 there exist H-differences f(x + h)@yf(x) and
f(x)Oyf (x + h) such that

fx+h)ef (x) . fx)ef (x—h) '
LETED = iy JOTED — e, (1)

lim,,
then the Fuzzy number f'(x) is said to be Hukuhara derivative of the function f at a point x.

2. Fuzzy Initial Value Problem

If any parameter in an initial value problem (2) has fuzziness, then the problem becomes a fuzzy initial value problem (3) [14,24].

x'(8) = f(tx(t)
{ WO =xe )
{y’(f) SFEYO) e 3)
y(to) = ¥o

where r-cuts are [yo], = [y(0;7),7(0;7)], 7 €(0,1].
Following Zadeh’s extension principle, for y = y(t) we can write
fly®)(s) = sup{y(r):s = f(1)},s € R}. Thus we will have
[f )] = [An), L], Te(01]

where

fiyir) = min{f@:u € |y, &0}
f0im) = max {f (wy:u € [y, @]}

Derivative of a fuzzy function f(y) can be defined as [24]:

[ (y©)l, = [0 fo(y;0)], tel r €(0,1]
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where

fi(y;¥) = min {f'@):u € [y(t;r), 51|}

fiyim) = max {f'):u € [y(6;), @)}

To have a unique solution for FIVP (2), f must satisfy Lipschitz condition:

NLf)—f@DUI<LIy—=zI, L>0.

For r €(0,1] the equivalent system to problem (3) can be written as

yen=fo®) = Amn =F(yen3En) @)
yO,) =y, (5)
760 =F®) = ror) =6 (X(t; R r)), ............................. ©)
yO,7) =y,(r).[14] (7

Definition Let f: (a,b) — E and x4 € (a, D).

(i) If for sufficiently small h > 0, 3f (xo + h)Of (xo), 3f (x0)OFf (x, — h) such that I im,_ o+ w =1 im_q+ w =
f'(xo) holds, then f is said to be (1) — differentiable.

(i) If for sufficiently small h > 0, 3f (xo + h)6f (xo), 3f (x0)6f (xg — h) such that I inp,_o- LE=DLED | iy, [EOFTLETD)
f(xo)holds, then f is said to be (2) — differentiable.

Theorem For a function f: T — F(R) and for Vr € [0,1] we can define r-cuts as

[f (&™), = [f(&;7), f(&;7)]. Thatis,

(1) If f is (7) — differentiable then i(t; r) and T(t; r) are differentiable functions and [f (t; 1)} = [L’(t; r),]T’(t; )]
(i) If f is (if) — differentiable then i(t; r) and ]_‘(t; r) are differentiable functions and [f'(t;7)} = [}?(t; r),i(t; r)].

3. Numerical Solutions of a Fuzzy Initial Value Problem

Consider the first order Fuzzy Initial Value Problem (3). In (3), y is a fuzzy function of t; f(t,y(t)) is a fuzzy function of a
variable t and a fuzzy variable y; y’ is the Hukuhara derivative of y. Initial condition y(t,) = y, may be a fuzzy number. In this
paper we solve a FDE via three numerical methods: Euler method, Adomian method and Homotopy Analysis Method.

Euler Method

Euler method uses the first order term of the Taylor series to find an approximate solution of a differential equation. Consider the
FIVP (3). Parametric form of (3) can be written as (4-6). To integrate (4) and (6), we partition the interval [t,, T] into M equal
pieces: (t, <t; <t, < - <ty = T). Let us denote the exact solution of FIVP as [Y(t)], = [Y(t; 1), Y(t; r)]and the approximate

solution as [y(t)], = [X(t; r),y(t; r)]. In this case, the exact solution is Yy, (r) = [¥y, (1), Y, ()] and the approximate solution is
T—tg

Y (0) = [Yn (1), ¥,,,(r)] at t,, where 0 < M < 1. Here ty = to+mh, h= 1 <m < M. Similar to the classical case, the

Euler Method for the fuzzy problem uses the first order approximates of Y'(t; ) and Y(t; r), and can be written as

Z(t+h;r)—Z(t;r)

Z'(t;r) = T (8)
Here Z(t;r) can alternatively be taken as Y(t; r) and Y(t; ).
Using (8) we obtain

Yin41(0) = Y (1) + hEL (D)
?m+1(r) = ?m(r) + th(r)
Where

Fm(r) £ F[tM'Zm(r)'?m(r)]
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G (1) 2 [Gty, Yin (1), Yoo (t) ] and from here we get Ym+1(1) = Ym(r) + hE, (tM,Xm(r),Vm(r))
Fer () = T () + WGy (£40, Y (1), 7, (0)).

3.2. HAM yontemi

Let us consider the following differential equation N[x(t)] =0, t = t,, where N denotes a nonlinear differential operator and
x(t) denotes an unknown function of t. The 0"-order deformation equation can be written as [15]

A= Llpt; Q) —x (O] = qhHON[0(E Q)] )

Here q € [0,1] is the embedding parameter, and £ is an auxiliary linear operator such that

L[f()] = 0 when f(t) = 0.

In (9), ¢(t; q) denotes the unknown function, x,(t) is an initial value for x, h # 0 is an auxiliary parameter, and H(t) # 0
represents an auxiliary function. As ¢ increases from 0 to 1, the solution ¢(#;q) varies continuously from the initial approximation
to the exact solution.

The m™-order deformation derivative is defined as

_ 1Mt
X (t) = m agm
parameter g,

o(t;q) = xo(t) + Xn=1 X (g™

We then expand the solution function ¢(t;q) in a Taylor series with respect to the embedding
q=0

In this paper, we consider the construction of solution for fuzzy IVPs with respect to (1)- differentiability via HAM. The (2)-
differentiability case is similar to this one. For the fuzzy case the Homotopy method is based on continuos mappings x,.(t) —
@r(t; q) and x,.(t) - @,.(t;q). Similar to the regular ODEs, as the embedding parameter g varies from 0 to 1, the functions

@r(t; q) and @_(¢; q) varies from an initial approximation to the exact solution.

We then define

Mo D] = 219,60 — fir© (6.0, 0. 7,5:0))
d — —
Nolgy (& ] = 23,69 - £, (606 . F, (6 )
where N; and N, are nonlinear operators. Using ¢, we can assemble a family of 0"-order deformation equations
(1= )Ly [0, (t:0) = 2,0(0)| = qhaHy(ON; [ (8 )],
1-qL, [@(t; q) — Er,o(t)] = qh,H,(t)N, [@(t; CI)],

subject to the initial conditions @, (to;q) = x,0(t) and @, (to;q) = Xo(t). Here x,0(t) and X, o(t) are the initial
approximations of x,.(t) and X,.(t), respectively.

We obtain Taylor expansion for ¢,.(t; g)and @,.(t; q) of g as

9r(t;q) = 2%0() + Tzt 2, m () ™
@(fi Q) = Er,o(t) + Z%:lyr,m(t)qm

— . . 1 0™ (tq) 1 0™, (t:q)
where x,.,,, (t) and x, ,, (t) are given, respectively, as R ST - d P T

. Thus, when g = 1, the series becomes
q=0

X (1) = X00(8) + X1 Xrm (1),
X () = Xp0(t) + Yot Xy (£)

From the m™-order deformation equations, we have

L[5 (® = Hnem 1 O] = RaHy(ORy,, (Enr (0, Fr ),

L[ (® = nFrm s (O] = T Hy(ORen (Bn 2 (0T s (0))
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Where
> = d 1 0" ber (609, (6]
iREm (Em—l(t)'xm—l(t)> = Eﬁr,m(t) - (m-1)! agm—1 420
R - d— 1 0" rlter ()0, ()|
R (s FpaO) = G () — Gl PP

When we choose H;(t) =1, h; = h,and £; = %, for i = 1,2, the right inverse of% will be the integral f:o (.)dt. Hence, the m™-

order deformation equation for m > 1 can be written as

5y () = s (O + [ B (s (0, T 1 (0))

Er,m(t) = mer,m—l(t) +h ftto Rzm (Zm—l(t):im—l(t)) dr.

If we choose x,(t) = x,.(to) = x? and X,.0(t) = x,.(t,) = X, as initial guesses of x,-(t) and X, (t), respectively, we can
calculate x,;(t) and X, ;(t), i= 1,2,...,n by using the iteration formula above. Ultimately, we find the approximate solution
x,(t) and x,.(t) of the corresponding system via the series

W, () = 220 X m(8), Wz, (£) = T X (0).
A special case of HAM is the Adomian Decomposition Method which will be briefly explained in the next subsection.

3.3. Adomian Decomposition Method

The Adomian decomposition method, introduced by Adomian in the 1980s, can be used to solve linear and nonlinear equations [5,
6]. To solve a nonlinear functional equation of the form u — N(u) = f where f is the given function and N is the nonlinear
operator, we consider the solutions u = }}i_,u; in the series form. Here the nonlinear operator is of the form N(u) = X%_q 4y,
and polynomial A,s in ug, Uy, ..., u, are called Adomian polynomials.

Let

zZ= X Aiui,

N(Xi, liui) = Yn=0A"4,

and

Ay = f(uo)c'l

A= (d—uo)f(uo),

Ay =1, (di%)f(uo) + (ub/21)(d /dud)f (y),

Ay = us (75) £ (o) + (urt) () £ (o) + () (85) f o),

1 4an - i
=——[NQZoAu)]ize, n=0,12,..

n nraan
where A is a parameter. The iterative formula

Unsr = An(Uo, Uy, ) Up),
n=0,1.2,..

Uo = (50)

is used to determine the terms of the series

U= Yiou;.

Truncated series ¥, = uy + uq + -+ u,_4 is then used to approximate u. [6, 8]
4. RESULTS AND DISCUSSION

Example: Consider the fuzzy initial value problem

y'(®) = —y(®) +sin (1),

(0)_(24+1 101 1 )
YW =\25"25" 100 100 /)
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The exact solution is

Y(t) = E (sin(t) — cos(t)) + ge‘t + (z—g+%r) e‘t,i(s in(t) — cos(t)) +%e’t + (% +2—15r) e_t].

Now let us show the first a few approximate solution steps explicitly for all three methods.
a) Via Euler method: Using Euler method we write the iterative equations

Y@ = 3@ + hE (6,0, 7,00),

T (1) = 5,0 + 16 (£0,3:0.5,00),

with

24 1 — 101 1
X(O'r)_z+gr7 Y(O;r)—m—mr.
wherei =1,2,3,...,N—1land h = %,

then we obtain

_ 24 1 24 1 _
Xl:X0+h(_20+sm(t))=E+ﬁr+h<_ﬁ_ﬁr+sm(t)>

= +h( + si (t))—24+ ! +h< a l + si (t)) h(24+ ! +h( a2 + si (t)) i t)
V2=V Y1 +sin =5z 25r R 25r sin R 25r T 25r sin sin (t) ).
Similarly,

o _ ] 101 1 101 1 .
Y, =, +h(=y, +sin () = 100 100"~ h(m—mr —sin (t))

— — — . 101 1 101 1 . 101 1 101 1 . .
y,=y, + h(—y1 + sin (t)) =T Tl T h (E ~ s~ sm(t)) —h (E ~ s~ h (E vy sm(t)) — sin (t)).

Table 2 shows error estimation for different values of r € [0, 1] and h.

b) Via Adomian Decomposition Method: ADM for this FIVP will produce

b 24, 1. =, 1.
Yo = Xo(r) + fo sin(t) dt = 2459+ Zi’r cos(t) +1 = =TT 49cos (tl),
t t .
Y1 = Jo —Yo(t;T)dt = -/, (E+Er — cos (t)) dt =sin(t) —_t+_rt,

t t . 49 1 1 49
Y2 = N -yt r)dt = -/ (sm(t) -5t +E) dt = cos(t) + grtz + gtz -1,

and similarly

101

T, = F,(r) + [ sin(®) dt = = — —r — cos(t) + 1,

100 100
— t (101 1 . 101 1
y, = —fo (E_Er —cos(t) + 1) dt = sin(t) ~ ol Tt — ¢t
5 o= — (s B = L g2 202
v, ==/, (sm(t) oot t o7t t) dt = cos(t) — s-rt? + 2 t? — 1.

We approximate y(t; r) and y(t; r), with ¢, and 510, respectively, as follows:

10
1 49 1 1 1 1
= = —r———t—cos(t) +sin(t) — —rt + =7t — —rt3 + —rt* t° t° t7"
10 nZBX" 257 5t T Cos(®) +sin(t) —oert + gart® —Tnrtt + et + 25557 + Te000 "¢+ 126000
1 1 12 4 49 49 1 1 7 7
ts_ t9 _tz__t3 _t4__t5 _t6_ t7 tS_ t9
+ 41;808000r 9072000" " Y25 725" t600" “3000° T750° " 5250° ' 1440000 1296000
25
_ 201 1 1 1 1 1 1 1 1 1
=sin(t) - —t — t) — — —_—rt — —— t2 - t3— t4 tS_ t6 t7— tS
10 = sin(®) = 355t —cos® — 7557 + 7557 ~ 550" Y 500" ~ 2200 ¢ 12000 72000 ¢ t504000"¢ 4032000
101 ., 101 67 101 101 67 67 201

5 8 9

~12096000° T 100

9 2 — 3 4

- - 4 6 _ 7
* 36288000rt * 200 600 800t 4-000t * 72000t 504—000t * 134—4000t

¢) Via Homotopy Analysis Method.:

y'() = —y(t) + sin (t)
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— 101 1
7,(0) = tox = o7

100
will yield:

(1) Fort > 0;
Xr(t) = _Xr(t) + sint
y.(8) = y (t) +sint

Yr(o) __+_
101 1
y,(0) = o0 " Toa"

24 1
yl—hf [y0+y0—smt(1—)(1)]dt ht<25+ﬁr)+h(cost 1)

101 1

flf[ +Y,— sint(l—)(l)]=ht(m ™ )+h(cost 1)

ya=y1+ hfot [Xl +y; — sint(1 —)(2)] dt = h(cost—1) + ht (%+%r) + hzt(—i+%r) + h?(cost+sint—1) +

25
12 1
h%t? (— + —r)
25 ' 50

?2=§1+hft[§;+§1—sint(l—)(z)] = t[ (%—%Or) hsint+ vt(loo =0 )+h(cost 1)]dt—h(cost 1+
ht (& - ) + A2t (— - —r) + h%(cost+ sint— 1) + h%t? (101 - ir)
100 100 100 100 200 200

By letting the parameter & be —1, we obtain

1 (—l)it2i+1 ( 1)lt.21 ( 1)t ( 1)lt.21
Py, 4o () = 3 B 23k, I, S 4 (B4 L)z, &2

=0 (2i+1)! T@) 25 ' 25
V(0 = S0 SO — 13 SO 4 R S0+ (G5 - ) B S0
Va0 = = cos(0) + LRpg CUE y yak SOy Ly SO (284 L) ok, C0E
s (0) = = cos) + BTG + SEI I 4+ S O (- ) B

1l 1 ¢ 24 1 _t
¥y () =2 (sin(t) — cos(t)) +e~" + (E+ E,«) e

y,.(t) = %(sin(t) —cos(t)) + %e‘t + (& - ir) et

100 100

24
25

y(t) = (% (sin(t) — cos(t)) + %e‘t + ( + 2—157‘) e‘t,% (sin(t) — cos(t)) + %e‘t + (g - Lr) e‘t)

(i1) Fort < 0;

yr(t) = =y,(t) + sint
Y, () = =y (t) + sint
101 1
y1= hf [yo +y,— sint(1 —)(1)] dt = (cost— Dh + (100 —Mr) ht

¥, = hfy |7, +yo = sint(1 = x;)| dt = h(cost—1) + ht (2 + —7)

101

50" Tos )+hz(cost+smt—1)+h2 (——ir)+

100 100

Y2=n+ hf [yl +y, —sint(1 - )(2)] dt = h(cost—1) + ht(
h2t2 (E+ir)

50
— t[— . 24 | 1 . 1,1

Y, =Y, +hf [y1 +y1 — sint(1 —)(2)] dt == h(cost— 1) + ht (E+Er) + h%(cost+sint—1) + hzt(—g+zr) +
h2t? (&—ir>

200 200
For A = —1 we can obtain
_ lgak D 1ggp CDYH sk DU 241 Yqak 2 (101 1 guk (D! - B
Vr, (O = =220 i=0 + i=0 + +o7) dizo; T) Li=o Yz, . () =
Xr4ak 2 (2i+1)! 2 (2i)! 2 i! 25 25 2i! 100 100 (2i+1)! T4k
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4k (—l)it2i+1__ 4k (- 1)t 1) tl g_i 4k (_1)it21. 24 1 4k t2i+1
=0 (2i+1)! Z (20! Z il +(1oo 100r) =0 5 ( t2 ) =0 (2i+1)!
(t) (t)+ 4k+ ( 1) t21+1 k (_1)it21 Z( 1) tz ( 1 >4k tZi (101 )Z t21+1
Vi aera (1) = = COS 2i+ D! 20! 25" 25 2t \100 100 2i+ 1)
i=0 i=0

Vs () = oS0 + 3 W—( D ANV 1 H_(‘l)i“Jr(ﬂ_L )Wf_”

Frake1 2 Q20+ D) . @) 24 il 100 100 / Z. 2i!

i= = 1= =

24 1 4k t2i+1
— _+_ —_—

<25 zsr), 2 2i+ 1)

=

Figure 1 below shows the performance of each method along with the exact solution. Table 1 below shows the solution values for
all three methods for 0<r<1. Table 2 below shows the error for all 3 methods.

tr Q *
-~~~ Adomian &
09} gK O*
* HAM /
0.8 Euler o ¥ @ %
07! Exact oK x
0.6 o ¥ o *
- 051 o # =
0.4 o ¥ Q *
03} o # O *
0.2} o ¥ o ¥
0.1 o ¥ © #*
] - : L ; © lk !
095 0.96 087 098 0.99 1 1.01 1.02
Y

Figure 1. Comparison among the 3 approximate solutions

Table 1. The approximate and exact solution values for 0<r<1

Euler ADM HAM Exact

r y y y y y y y y

0 0,95881470984807  1,00831470984  0,9604976737325 1,01000016541  0,96049767776  1,0100001696635  0,960050334166  1,010050334166
9 808 36 999 4858 1 661 66

0.1 0,96277470984807  1,00732470984  0,9644578730675 1,00901011558  0,96445787711 1,0090101198255  0,964050334166  1,009050334166
9 808 33 625 6751 4 661 66

0.2 0,96673470984807  1,00633470984  0,9684180724025 1,00802006575  0,96841807646  1,0080200699875  0,968050334166  1,008050334166
9 808 29 250 8642 6 661 66

0.3 0,97069470984807  1,00534470984  0,9723782717375 1,00703001591  0,97237827582 1,0070300201495  0,972050334166  1,007050334166
9 808 26 875 0535 9 661 66

0.4  0,97465470984807  1,00435470984  0,9763384710725 1,00603996608  0,97633847517 1,0060399703116  0,976050334166  1,006050334166
9 808 23 500 2427 2 661 66

0.5 0,97861470984807  1,00336470984  0,9802986704075 1,00504991625  0,98029867452 1,0050499204736  0,980050334166  1,005050334166
9 808 19 125 4319 4 661 66

0.6  0,98257470984807  1,00237470984  0,9842588697425 1,00405986641  0,98425887387 1,0040598706356  0,984050334166  1,004050334166
9 808 16 750 6211 7 661 66

0.7 0,98653470984807  1,00138470984  0,9882190690775 1,00306981658  0,98821907322 1,0030698207977  0,988050334166  1,003050334166
9 808 13 375 8103 0 661 66

0.8  0,99049470984807  1,00039470984  0,9921792684125 1,00207976675  0,99217927257 1,0020797709597  0,992050334166  1,002050334166
9 808 09 000 9994 2 661 66

0.9  0,99445470984807  0,99940470984  0,9961394677475 1,00108971691  0,99613947193 1,0010897211217  0,996050334166  1,001050334166
9 8079 06 625 1888 5 661 66

1 0,99841470984807  0,99841470984 1,0000996670825 1,00009966708  1,00009967128 1,0000996712837  1,000050334166  1,000050334166
9 8079 0 250 378 8 66 66

Table 2. The error for all 3 methods

Euler ADM HAM

y_error y_error y_error y_error y_error y_etror

0,0000228471890251404  0,0000312656227772756  0,000000852629996577922  0,0000000108925601114895  0,000000852652340537162  0,0000000108925122404276

In this paper we presented numerical approximation steps explicitly to the solution of a FIVP via 3 methods, namely, Euler
method, homotopy analysis method, and Adomian decomposition method algorithms. Afterwards, we compared the numerical
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results. According to the experimental results obtained, we can say that all three methods are giving close solution values with
relatively small errors.
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