ISSN: 2230-9926 Available online at http://www.journalijdr.com International Journal of Development Research Vol. 08, Issue, 05, pp.20281-20286, May, 2018 ## **ORIGINAL RESEARCH ARTICLE** **OPEN ACCESS** # **SOME RESULTS ON SUBDIVISION GRAPHS** # *Velammal. S. Department of Mathematics, Velammal College of Engineering and Technology, Viraganoor, Madurai – 625 009, India ## ARTICLE INFO # Article History: Received 15th February, 2018 Received in revised form 25th March, 2018 Accepted 19th April, 2018 Published online 28th May, 2018 ## Key Words: Domination number, Total domination number, Independent domination number, Sub division number. ## **ABSTRACT** In this paper we introduce the concept of subdivision number and total subdivision number of a graph G, obtain bounds for these parameters and determine their exact values for several classes of graphs. Copyright © 2018, Velammal. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Citation: Velammal, S., 2018. "Some results on subdivision graphs", International Journal of Development Research, 8, (05), 20281-20286. # INTRODUCTION By a graph G=(V,E) we mean a finite undirected graph without loops or multiple edges. Terms defined here are used in the sense of Harary [1972]. A subset S of V is called a dominating set of G if every vertex not in S is adjacent to some vertex in S. The domination number $\gamma(G)$ (or $\gamma(G)$ for short) of G is the minimum cardinality taken over all dominating sets of G. A subset S of V is called a total dominating set of G if every vertex in V is adjacent to some vertex in S. The cardinality of a smallest total dominating set of G is called the total domination number of G and is denoted by γ_t . A dominating set S of a graph G is called an independent dominating set of G if $\gamma(G)$ is independent in G. The cardinality of a smallest independent dominating set of G is called the independent number of G and is denoted by γ_t A subdivision of an edge $\gamma(G)$ is the replacement of the edge e by a path $\gamma(G)$. The graph obtained from a graph G by subdividing each edge of G exactly once is called the subdivision graph of G and is denoted by $\gamma(G)$. We need the following theorems. Theorem 1.1[Walikar et al., 1979, p.137] Let G be a connected graph of order $p \ge 2$. Then $\gamma = p/2$ if and only if $G = C_4$ or H^+ for some connected graph H. Theorem 1.2 (Ore, 1962) For any graph G of order p that has no isolated vertex, $\gamma \le \left[\frac{p}{2}\right]$ Theorem 1.3 (Arumugam and Paulraj Joseph, 1996) If G is a connected graph, then γ (S(G)) = γ _i(S(G)). In this paper we consider the following problem. Given a graph G, What is the minimum number of edges to be subdivided exactly once so that the domination number of the resulting graph exceeds that of G. ## MAIN RESULTS ## **Theorem** Let G be a connected graph of order $p \ge 2$. Then $$(i)\gamma_{i}(S(G)) \ge \left\lceil \frac{p}{2} \right\rceil$$ $(ii)\gamma(G) \le \gamma(S(G))$ and equality holds if and only if $G = K_2$ ## **Proof** (i) Let V(G)= $\{v_1, v_2, \dots, v_p\}$ and E(G) = $\{e_1, e_2, \dots, e_q\}$. Let w_i be the vertex of S(G) which subdivides the edge e_i . Let D be a minimum independent dominating set of S(G). Let $D_1 = D \cap V(G)$ and $D_2 = D \cap (V(S(G)) \setminus V(G))$. If $D_2 = \emptyset$ then $$D_{1} = V(G)$$ and hence $\gamma_i(S(G)) = p \ge \left\lceil \frac{p}{2} \right\rceil$. Suppose $D_1 = \emptyset$. Since each vertex of D dominates exactly two vertices of $V(S(G))\setminus D$, it follows that $|V(S(G))\setminus D| \le 2|D|$. Hence $$p+q-|D| \le 2|D|$$ so that $|D| \ge \frac{2p-1}{3} \ge \left\lceil \frac{p}{2} \right\rceil$. Suppose both D_1 and D_2 are non-empty. Since each vertex of D_2 dominates exactly two vertices of V(G), it follows that $$p - \left| \mathbf{D_1} \right| \le 2 \left| \mathbf{D_2} \right|. \text{ Hence } p \le \left| \mathbf{D1} \right| + 2 \left| \mathbf{D_2} \right| \le 2 \left| \mathbf{D} \right|. \text{ Thus } \gamma_i(S(G)) = \left| D \right| \ge p / 2 \text{ so that } \gamma_i(S(G)) \ge \left\lceil \frac{p}{2} \right\rceil.$$ (ii) Let D be a minimum dominating set of S(G). Let $w_i \in D$. Then at least one end of each e_i , say u_i does not belong to D. We now replace D by $\{w_i\} \cup \{u_i\}$. By repeating this process, we obtain a subset D_1 of V(G) such that $|D_1| \le |D|$. Clearly $\gamma(G) \le \gamma(S(G))$. For $G = K_2$, we have $\gamma(G) = \gamma(S(G)) = 1$. Now, let G be connected graph with $\gamma(G) = \gamma(S(G))$. By Theorem 1.3, $\gamma(G) = \gamma(S(G))$ $$\gamma_i$$ (S(G)) and hence it follows from (i) that $\gamma(S(G)) \ge \left\lceil \frac{p}{2} \right\rceil$. Also by Theorem 1.2 $\gamma(G) \le \left\lfloor \frac{p}{2} \right\rfloor$. Hence $$\gamma(G) \le \left\lfloor \frac{p}{2} \right\rfloor \le \left\lceil \frac{p}{2} \right\rceil \le \gamma(S(G))$$. Since $\gamma(G) = \gamma(S(G))$, $\left\lfloor \frac{p}{2} \right\rfloor = \left\lceil \frac{p}{2} \right\rceil$ so that p is even and $\gamma(G) = \gamma(S(G)) = p/2$. It follows from Theorem 1.1, $G = C_4$ or H^+ for some connected graph H. Since $\gamma(G) = \gamma(S(G))$, $G \neq C_4$. If $G = H^+$ for some connected graph H of order ≥ 2 , then γ_1 (S(G)) > p/2. Hence it follows that $H = K_1$ and $G = H^+ = K_2$. It follows from Theorem 2.1 that $\gamma(S(G)) > \gamma(G)$ for any connected graph G of order at least 3. Hence the following question naturally arises. What is the minimum number of edges to be subdivided exactly once so that the domination number of the resulting graph exceeds that of G? This motivates the following definition. ## **Definition** Let $G \neq K_2$ be a connected graph. The subdivision number sd(G) is defined to be the least positive integer k satisfying the following. There exists a set $S \subseteq E(G)$ with |S| = k such that for the graph H obtained by subdividing each edge in S exactly once, $\gamma(H) > \gamma(G)$. We now proceed to compute sd(G) for some special classes of graphs. ## **Example** - (i) sd(G) = 1 for any graph G with $p \ge 3$ and $\Delta = p 1$. In particular, sd(Kp) = 1 for $p \ge 3$ and sd(Wp) = 1 for some $p \ge 3$. - (ii) Since $\gamma(Pn) = \left| \frac{n}{3} \right|$ and the graph obtained by subdividing edges of P_n is again a path, it follows that. $$sd(Pn) = \begin{cases} 1 \text{ if } n \equiv 0 \pmod{3} \\ 2 \text{ if } n \equiv 2 \pmod{3} \\ 3 \text{ if } n \equiv 1 \pmod{3} \end{cases}$$ (iii) Similarly, $$sd(Cn) = \begin{cases} 1 \text{ if } n \equiv 0 \pmod{3} \\ 2 \text{ if } n \equiv 2 \pmod{3} \\ 3 \text{ if } n \equiv 1 \pmod{3} \end{cases}$$ # Theorem $$sd(Km,n) = \begin{cases} 2 \text{ if } 3 \le m \le n \\ 3 \text{ if } m=2 \text{ and } n \ge 2. \end{cases}$$ ## Proof Let $2 \le m \le n$. Clearly γ (Km,n) = 2. Let (X,Y) be a bipartition of Km,n with |X| = m and |Y| = n. Let $X = \{x_1, x_2,, x_m\}$ and $Y = \{y_1, y_2,, y_n\}$. Let G_1 be the graph obtained from Km,n by subdividing an arbitrary edge e = uv. Clearly $\{u,v\}$ is a minimum dominating set of G_1 so that $\gamma(G_1) = \gamma(G) = 2$. Hence $sd(Km,n) \ge 2$. We consider the following cases. Case (i) $3 \le m \le n$. Let $e_1 = x_1y_1$ and $e_2 = x_2y_2$ be two independent edges of Km,n. Let G_2 be the graph obtained from Km,n by subdividing the edges e_1 , e_2 with the vertices r,s respectively. Let $S = \{x_1, y_1, x_2, y_2, r, s\}$. Let D_2 be nay minimum dominating set for G_2 . Clearly $|S \cap D_2| = 2$, then $|D_2| = 3$. Hence it follows that $\gamma(G_2) > 2$ so that sd(Km,n) = 2. Case(ii) m=2 and $n \ge 2$. For any graph H obtained from Km,n by subdividing two arbitrary edges e_1 , e_2 , $\{x_1,x_2\}$ is a maximum dominating set of H. Hence $\gamma(H) = \gamma(G) = 2$ so that $sd(K_{2,n}) \ge 3$. Now let G_3 be the graph obtained from Km,n by subdividing the edges x_1y_1 , x_2y_2 and x_2y_1 . Clearly $\gamma(G_3) > 2$ and hence $sd(K_m,n) = 3$. ## Theorem Let G be a connected graph with $\gamma = \frac{p}{2}$. Then $sd(G) \le 3$ ## Proof By Theorem 1.1, $G = C_4$ or H^+ for some connected graph H. Clearly $sd(C_4) = 3$. Suppose $G = H^+$ for some connected graph H. Let u and v be any two adjacent vertices of H. Let u_1 and v_1 be the pendant vertices adjacent to u and v respectively. Let G_1 be the graph obtained from G by subdividing the edges u_1v , uv and vv_1 . Clearly $\gamma(G_1) > \gamma(G)$ so that $sd(G) \le 3$. # **Theorem** For any tree T of order $p \ge 3$, $sd(T) \le 3$. # Proof The result is trivial if p = 3. Suppose $p \ge 4$. If there exists a vertex u in T such that u is adjacent to two pendant vertices v and w, then for the tree T_1 obtained from T by subdividing the edge uv, we have $\gamma(T_1) = \gamma(T) + 1$ and hence $\mathrm{sd}(T) = 1$. Hence we assume that each vertex of T is adjacent to at most one pendant vertex of T. In this case, T has a vertex u of degree 2 which is adjacent to exactly one pendant vertex u. Let w be the other vertex adjacent to u. Let T_1 be the tree obtained from T by subdividing the edges uv and uw with the vertices r,s respectively. If $\gamma(T_1) > \gamma(T)$, then $\mathrm{sd}(T) \le 2$. Suppose $(T_1) = \gamma(T)$. Now any minimum dominating set D_1 of T_1 contains r and at least one of the vertices u,s,w. If $r,u \in D_1$ then $D_1 \setminus \{r\}$ is a dominating set of T which is a contradiction. If $r,s \in D_1$, then $(D_1 \setminus \{r,s\}) \bigcup \{u\}$ is a dominating set of T, which is a contradiction. Hence $r,w \in D_1$. Let $N(w) \setminus \{s\} = \{x_1,x_2,....,x_n\}$. We now claim that there exists an edge wx_i $(1 \le i \le n)$ such that for the tree T_2 obtained from T_1 by subdividing $wx_i, \gamma(T_2) > \gamma(T_1)$. If this is not true,then for each $i(1 \le i \le n)$, either $x_i \in D_1$ or is dominated by a vertex of D_1 other than w. Hence $(D_1 \setminus \{w\}) \bigcup \{s\}$ is a minimum dominating set of T_1 which contains r,s; this is also a contradiction. Hence it follows that $sd(T) \le 3$. ## Corollary If there exists a vertex of a tree T which is adjacent to at least two pendant vertices, then sd(T)=1. ## **Theorem** If F is a forest, then F is an induced subgraph of a tree T_1 with $sd(T_1) = 1$, a tree T_2 with $sd(T_2) = 2$ and a tree T_3 with $sd(T_3) = 3$. #### **Proof** Let u be the central vertex of a path of order 3. From each component of F, select one vertex and introduce an edge joining that vertex and u. The resulting tree T_1 contains F as an induced subgraph and has a vertex namely u adjacent with two end vertices. By Corollary 2.7, $sd(T_1) = 1$. We now prove the existence of trees T_2 and T_3 with $sd(T_2) = 2$ and $sd(T_3) = 3$ such that T_2 and T_3 contain F as an induced subgraph. We proceed by induction on the order p of F. The claim is easily verified for p = 2. Assume that the claim is true for every forest of order p. Let F be a forest of order p + 1. Suppose $F = \overline{K}_{p+1}$. Let T_2 be the path on p = 2 verified for p = 2. Assume that the claim is true for every forest of order p + 1. Suppose p = 2 and p = 2 that p = 2 is the path on p = 2 verified for p = 2. Assume that p = 2 is true for every forest of order p + 1. Suppose p = 2 and p = 2 independent p = 2 and # Figure Let T_i be the tree obtained by taking the union of S_i and H_i and adding the vertex u together with the edges uv, ux_1 and $ux_2(i=2,3)$. Clearly T_2 , T_3 contain F as an induced forest. # Figure Any minimum dominating set of T_i is of the form $D_i \cup X_i$ where D_i is a minimum dominating set of S_i and X_i is a minimum dominating set of the subgraph of T_i induced by $V(H_i) \cup \{u\}$ (i = 2,3). Let J_i be the subgraph induced by the vertices in $V(H_i) \cup \{u,v\}$ (i = 2,3). Since $sd(S_i) = i$ and $sd(J_i) = i$ (i = 2,3), it follows that $sd(T_i) = i$ (i = 2,3). The determination of exact value or tight bound for sd(G) for any arbitrary graph remains open. In this connection we conjecture that $sd(G) \le 3$ for any graph G. We now proceed to extend the concept of subdivision number with respect to total domination. #### Lemma For any connected graph G, γ_t $(S(G)) \ge p$. # **Proof** Let D be any total dominating set of S(G). Let $D_1 = D \cap V(G)$ and $D_2 = D \cap (V(S(G)) \setminus V(G))$. Since D is a total dominating set of S(G), $D_1 \neq \phi$, $D_2 \neq \phi$ and each element of D_2 dominates at most one vertex of V(G). Hence it follows that $|D_2| \geq p - |D_1|$. Then $|D| = |D_1| + |D_2| \geq p$ so that γ_t $(S(G)) \geq p$. # Lemma Leg G be a graph without isolated vertices. Then $\gamma_t(G) = \gamma_t(S(G))$ if and only if $G = mK_2$. ## **Proof** Let G be a graph without isolated vertices and $\gamma_{t}(G) = \gamma_{t}(S(G)) \ge p$. It follows from Lemma 2.9, $\gamma_{t}(G) = \gamma_{t}(S(G)) \ge p$. Hence $\gamma_{t}(G) = p$ so that $G = mK_{2}$. The converse is obvious. # **Definition** Let $G \neq K_2$ be a connected graph. The total sub-division number tsd(G) of G is defined to be the least positive integer k satisfying the following. There exists a set $S \subseteq E(G)$ with |S| = k such that for the graph H obtained by subdividing each edge in S exactly once, $\gamma_t(H) > \gamma_t(G)$. # Example (i) Since $$\gamma_{t}(Pn) = \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \pmod{4} \\ 1 + 2 \left\lfloor \frac{n}{4} \right\rfloor & \text{if } n \equiv 1 \pmod{4} \\ 2 + 2 \left\lfloor \frac{n}{4} \right\rfloor & \text{if } n \equiv 2 \text{ or } 3 \pmod{4} \end{cases}$$ and the graph obtained by subdividing the edges of Pn is again a path, it follows that $$tsd(Pn) = \begin{cases} 1 & \text{if } n \equiv 0 \text{ or } 1 \pmod{4} \\ 3 & \text{if } n \equiv 2 \pmod{4} \\ 2 & \text{if } n \equiv 3 \pmod{4} \end{cases}$$ $$tsd(Cn) = \begin{cases} 1 & \text{if } n \equiv 0 \text{ or } 1 \pmod{4} \\ 0 & \text{if } n \equiv 2 \pmod{4} \\ 2 & \text{if } n \equiv 3 \pmod{4} \end{cases}$$ ## **Theorem** For any graph G with $\Delta\Box = p-1$, tsd(G) = 2. # **Proof** Clearly γ_t (G) = 2. Let u be a vertex of G with deg u = p - 1. Let G_1 be the graph obtained from G by subdividing any arbitrary edge e of G. If e passes through u, then $\{u, w\}$ where w is the vertex which subdivides e is a total dominating set of G_1 ; otherwise $\{u, v\}$ where v is a vertex incident with e is a total dominating set of G. Thus tsd(G) > 1. Now if G_2 is the graph obtained from G buy subdividing two edges passing through u, $\gamma_t(G_2) > 2$. Hence tsd(G) = 2. # Corollary $$tsd(Kp) = tsd(Wp) = 2$$. # REFERENCES Harary, F. 1972. Graph Theory, Addison Wesley Reading Mass. Walikar, H.B., Acharya, B.D. and Sampathkumar, E. 1979. Recent developments in the theory of domination in graphs, M.R.I Lecture notes in math.1. Mehta Research Institute, Allahabad. Ore, O. 1962. Theory of Graphs, Amer. Math. Soc. Collog. Publ., 38, Providence. Arumugam, S. and Paulraj Joseph, J. 1996. Domination in Subdivision graphs, International journal of management and system 11(1) (/111-116). *****