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ARTICLE INFO  ABSTRACT 
 
 

The field of machine learning and artificial intelligence (ML/AI) is rapidly evolving today and 
slowly beginning to reshape the mining sector. With the mining machinery becoming larger and 
equipment more sophisticated, the sector can gain immensely from these advanced technologies 
in terms of operational efficiency and ramping down costs. ML/AI is a field of computer study 
that deals with the creation of intelligent machines that work and reacts like humans. It covers a 
wide spectrum from speech recognition and visual perception up to language translations and 
decision-making, which normally require human intelligence. ML algorithms and AI is 
considered the next step for digital mine transformation. AI can be successfully leveraged at 
different stages of mining to identify and unlock potential use cases. From the prospecting and 
exploration stage to the actual mining process, AI and analytics can be used in multiple ways. 
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INTRODUCTION 
 
Data Analytics is the modern approach of data science which 
classify the kind of data being process now a days. As we 
know that now a day the data traffic became more and more 
rush due to advents of unstructured pattern. Hence to process 
such data we have to face a lot of difficulty. As the data source 
is get unstructured hence to process such data we need more 
complex algorithm. One of the best case of such complex 
unstructured data is 3D data which is now a day’s used in the 
mines for coal mining. For several years, research group has 
been developing methods for automated modeling of 3D 
environments (Huber and Hebert, 1999; Huber, 2002; Huber 
and Hebert, 2003). In September, 2002, we were given the 
opportunity to demonstrate our mapping capability in an 
underground coal mine, the Mine Safety and Health 
Administration (MSHA) research mine in Bruceton, 
Pennsylvania. The opportunity arose as a result of the 
Quecreek mine accident in July, 2002, in which miners  
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inadvertently breached an abandoned, water filled mine, 
trapping themselves amidst thousands of tons of water. After 
the miners were safely rescued, an investigation was launched 
to determine the cause of the accident and to identify new 
procedures necessary to prevent mine breaches in the future. 
Regulations already in place aim to prevent such an accident: 
mapping the mine before ending operations, exploratory 
drilling, and so forth. Unfortunately, old maps may be 
incorrect, incomplete, or simply lost. In the end, the Quecreek 
accident was attributed to an inaccurate map (Gibb and Hopey, 
2003). A collaborative effort by several research groups at 
Carnegie Mellon University (CMU) has been formed to 
develop robots to autonomously map abandoned mines and 
active mines before operations are ended. Such robots would 
be an important contribution to mining safety. Details can be 
found in (Baker et al., 2003; Thrun et al., 2003; Morris et al., 
2003). In this paper, we address the problem of sensing and 
generating high-resolution 3D models of an active mine. 
 
Related work 
 
In this section, we review the most relevant work on mine 
mapping and localization. Early work by Shaffer (1992) 
described a method to localize a mobile robot in an 
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underground mine by registering terrain features (corner and 
line segments) extracted from an a priori survey map with 
cross-sections from an environment map produced by a laser 
scanner. In (Scheding et al., 1997; Scheding et al., 1999), 
Scheding extensively tested a set of navigation sensors 
mounted on a Load, Haul, and Dump truck (LHD) in the harsh 
underground mine environment. Using the data from a laser 
line scanner coupled with the navigation data of the vehicle, he 
produced a 3D model of a section of the mine. In (Madhavan 
et al., 1998), two line scanners were integrated on an LHD. 
The iterative closest point (ICP) algorithm was used to register 
the 2D pro_les to an existing map. This implementation was 
extended to mine mapping in (Madhavan et al., 1998). 
 

 
 

Figure 1. The cart-mounted Z+F laser scanner used in 
the data collection 

 
abandoned mines, Thrun (Thrun et al., 2003) prod uced 2D 
maps and partial 3D models of tunnels, using a SLAM 
approach with two line scanning lasers mounted on a tele-
operated robot (Baker et al., 2003). Several systems have been 
designed to map mines that are inaccessible to a ground robot, 
for example, by mapping a cavity using a 3D laser sensor 
inserted through a bore-hole. Such systems include the C-ALS 
(Cavity Auto scanning laser system) by Measurement Devices, 
Ltd. and the Cavity monitoring system by Optech, Inc.1 A 
similar approach has been followed in (Morris and Kurth, 
2003). 
 
Data collection 
 
For our field test, we used a high resolution 3D laser scanner 
mounted on a cart as illustrated in Figure-1. The sensor, a 
Zoller and Fröhlich LARA 25200 (Z+F) scanner (Langer et 
al., 2000), produces 8000_1400 pixel range and reflectance 
images 
with millimeter-level accuracy. The field of view is 360_ _70_ 
with a range of 22.5 m. The laser scan head was inclined to 
allow higher density scanning of the _oor and ceiling near the 
scanning platform. Unfortunately, in some regions, the low 
roof was actually too close to the scan head for the sensor to 
fully scan the ceiling. We obtained 23 scans at three- to _ve-
meter intervals along a loop trajectory through a sequence of 4 
hallways (_gure 2). The cart was kept stationary at each 
location for the 90 seconds required to obtain each scan. Due 

to the capabilities of our modeling algorithms, it was not 
necessary to record the position or attitude of the cart. This 
greatly simpli_es the data collection process. The entire 
procedure only took about three hours, including setup and 
disassembly of the equipment. For this experiment, the cart 
was moved manually, but it would be straightforward to mount 
the scanner on an autonomous mobile robot. 
 

 
 

Figure 2. Surveyed map of the Bruceton mine. The red circle 
indicates the area mapped in our _eld experiment. 

 

Automatic modeling from reality 
 
Modeling-from-reality is the process of creating digital three-
dimensional (3D) models of real-world scenes from 3D views 
as obtained, for example, from range sensors or stereo camera 
systems. Recently, we have developed a system that fully 
automates the modeling-from-reality process (Huber, 2002; 
Huber and M. Hebert, 2003). The key challenge of automatic 
modeling-fromreality is the accurate and robust registration of 
multiple 3D views. Although each input scan is an accurate 
representation of the 3D structure of the scene as seen from a 
single viewpoint, the data is expressed in the local coordinate 
system of the sensor. Our system automatically registers 
multiple 3D data sets in a common coordinate system without 
requiring any knowledge of the viewpoints from which the 
data was obtained. This capability is important in our case, 
because we did not survey the scan locations during our initial 
data collection. In a real system, where the sensor would be 
mounted on a robot, an approximate estimate of the motion 
between scans may be provided by the robot. Our algorithm 
has the ability to employ such information when it is available, 
but, more importantly, it will not break down when the 
estimates are not available. 

 

 
 

3d View 
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Orginal View 
 

 
 

3D view 
 

 
 

Orginal View 
 
Close-up views of the 3D model from various viewpoints (top 
row) and photographs obtained from the same viewpoints 
(bottom row). 
 
Laser sensing in mine environments 
 
Coal mine environments present a number of unique 
challenges for laser sensing systems, including the presence of 
explosive gas, widely ranging surface albedo, metallic objects, 
and wet surfaces. In the field test mine, the walls were coated 
non-uniformly with a white, waterproofing material, and in 
many places, bare coal was exposed. The roof was reinforced 
with metallic netting, and the environment contained numerous 
metallic objects, such as pipes and rails. Furthermore, regions 
of the walls and ceiling were wet and dripping water. For 
additional experiments, we collected samples of rocks and 
bituminous coal for analysis in the controlled environment of 
our laboratory. Open beam lasers can be a potential ignition 
source of methane gas or coal dust, but studies have shown 
that below 150 mW or 20 mW/mm2 methane gas or coal dust 
cannot be ignited by a laser beam4. With an average power of 
22 mW [6], the Z+F laser poses no threat.  

Our second concern was the level of noise and bias in range 
measurements when scanning scenes with widely ranging 
surface albedo. We analyzed the noise and bias using a 
calibration target made of 6 different color patches, including 
black and white. We positioned the laser at 7.5 m from the 
target and collected 11 identical scans to test the repeatability 
of the measurement. We measured the range for the pixels 
within each patch (725 pixels) and computed the mean and 
standard deviation for each patch over all the scans. Figure 7-
(b) shows the distribution of range measurements for the black 
and white patches. As expected, the level of noise for the black 
target (s = 5:80 mm) is larger than that of the white target (s = 
3:54 mm); however, even the worst case noise, which occurred 
with the black patch, was acceptable for a mine-mapping 
application. We analyzed reflectance-based range bias by 
estimating the difference in range between the white and black 
patch. For this experiment, we _t planes to the two patches 
using the total least squares method. Figure 7-(c) shows a top 
view of the two estimated planes, which have an offset of 1.3 
cm. As with the noise error, this bias is within acceptable 
limits for mine-mapping. Finally, we considered the effect of 
scanning specular targets, such as bituminous coal (which is 
relatively shiny) or wet surfaces. To test this, we scanned a _at 
piece of coal twice . once when the sample was dry and again 
when wet. The sample was positioned at 7.5 m from the sensor 
and scanned at near-normal incidence. As expected. 
 

Table 1. 
 

Sample Reflectance (min-mean-max) 

Coal (dry) 152 411 1347 
Coal (wet) 26 145 486 
Rock 291 491 754 
Wood 4413 5663 6709 
Aluminum 3330 3698 4022 
Black paper 283 355 470 
White paper 5353 5571 5777 

 
Table 1: Reflectance for different targets at 7.5 m the dry 
sample produced erroneous range measurements associated 
with specular reflections. Surprisingly, the wetting the coal 
sample actually reduced the frequency of erroneous 
measurements. We hypothesize that the reason we did not 
experience many specular reflections in our field tests is due to 
the wall-coating and damp environment. Table 1 shows a 
comparison of reflectance values for several targets scanned at 
7.5 m and near-normal incidence, including the wet and dry 
coal samples. 
 
Summary and future work 
 
In this paper, we have shown that our automatic modeling-
from-reality algorithms can be successfully applied to the 
problem of high-resolution mapping of underground mines. 
The model constructed from the 23 scans obtained during our 
_eld test was estimated to contain geometric errors on the 
order of 1 cm. The results of our laboratory experiments 
indicate that the various sensing challenges presented by the 
underground mining scenario may introduce error of 1-2 cm 
into a 3D model. However, it should be noted that these tests 
are only partially representative because the environment in 
our laboratory and in the Bruceton coal mine do not fully 
mimic harsh environment of an active coal mine. The results 
of this paper are a proof of concept. The next step would be to 
further specialize our automatic modeling system for the 
purpose of mine mapping. First, a ruggedized platform for the 
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system must be developed, either in the form of an electric cart 
or a tele-operated mobile robot. Second, our automatic 
modeling algorithms should be modified to operate in an 
online mode as opposed to the current batch method. The 
immediate feedback of an online algorithm would enable mine 
mappers to effectively plan the scan locations. Finally, we are 
working on new modeling algorithms that scale to very large 
numbers of views. Our current algorithms have O(N2) 
complexity in the number of input views, which limits 
processing to sub maps containing about 50 views. 
 
About Author: Prof Amar Nath Singh is presently working as 
an associate professor as reader in the Computer Science & 
Engineering Department. His research area includes wireless 
sensor network, Underground mines, surface mining, Artificial 
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