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ARTICLE INFO                                       ABSTRACT 
 
 

Plants face different abiotic stresses that reduce crop production worldwide. Cold stress is the main 
abiotic stress that reduce plant yield in hilly areas. Cold resistance in plants is considered to be an 
interesting phenomenon with complex signaling pathways. Tolerance to cold in plants is acquired 
by exposing them to a low non freezing temperature and involves extensive changes at molecular 
level. Understanding the molecular mechanism behind the cold resistance in plants can help us to 
develop more and more cold tolerant plants. This review discusses different molecular changes 
observed during development of cold tolerance in plants.  
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INTRODUCTION 
 
Plants withstand diverse range of cold and freezing 

temperatures (Sakai, 1987). Some plants of temperate regions 

are even able to survive in harsh cold conditions ranging from 

-5°C to -30°C. In most of the temperate plants, cold tolerance 
can be induced by exposing them to cold (non freezing) 

temperatures, a process called “cold acclimation” (LEVITT, 

1980) and involves extensive beneficial molecular changes 

(SHINOZAKI, 1996)  (Thomashow, 1998) (Gilmour et al., 

2000) (Thomashow, 2010) (Pearce S, 2013). Cold tolerance 

should not be confused with the cold acclimation, as former 

involves the ability to tolerate chilling temperatures (0–15◦C) 

without injury or damage (C., 1995), while as later involves 

increased tolerance to freezing stress (C.L., 1990) 

(Thomashow, 1999). Understanding the molecular mechanism 

behind the increase in freezing tolerance associated with cold 

acclimation is of great scientific interest and has potential 
practical applications in agronomic plants.  

 

 

 

Many approaches are presently in use to determine genes 

associated with the freezing tolerance, characterize genes 

activated during the process of cold acclimation and to study 

transcriptome. But how cold acclimation response is activated 

and what type molecular changes are associated during such 

process is of prime importance for investigators. It should be 

noted here that during cold acclimation, various physiological 

and molecular changes like transcriptional activation and 

repression of different genes has been reported (Thomashow, 

1999). Such reprogramming at genomic level, results in 
activation of cytoprotective protein and other protective 

metabolites. Understanding such molecular changes is of great 

importance as traditional plant breeding approaches were not 

so successful in enhancing freezing tolerance (SARHAN, 

1998).  
 

Cold tolerance and molecular changes 

 

An optimum temperature is needed for proper growth and 

development of a plant and this temperature vary for every 

species.  
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It should be further noted that the temperature conditions, 

which are optimum for one plant may pose stress for the other. 

Plants native to warm conditions shows damage upon 

exposure to cold condition (D.V., 1990). Appearance of cold 

associated injury symptoms depends mainly upon the 

sensitivity of a plant toward cold stress. Depending upon the 

intensity and duration of the cold stress, a wide spectrum of 

cellular components are affected. Cell membranes are 

considered to be the primary targets of cold injury in plants 

(LEVITT, 1980)  (STEPONKUS, 1984). It was earlier 
proposed that cold acclimation might activate specific genes 

(J, 1970) and it was later on found that indeed there are 

changes in mRNA population (Guy et al., 1985). Cold 

acclimation has been associated with the induction of novel 

mRNA molecules and this provide basis for isolation of the 

corresponding cDNA molecules by differential screening and 

more recently by subtractive cloning and differential display. 

Till date various genes or corresponding cDNAs have been 

described in different plants including tomato (Schaffer M A, 

1988), Arabidopsis (Hajela et al., 1990) (Nordin et al., 1991) 

(Nordin et al., 1993) (Gilmour et al., 1992) (Welin B V, 1994 ) 
(WeHn B V, 1995 )  (Jarillo et al., 1994), bromegrass (Lee S 

P, 1993 ), alfalfa (Monroy et al., 1993) (Castonguay et al., 

1994), potato (van Berkel J. Salamini F, 1994) (Zhu, 1993 ) 

(Baudo MM, 1996 ), rice (Aguan et al., 1993), rye (Zhang L, 

1993)), wheat (Holappa, 1995) (Chauvin et al., 1993)  (Houde 

et al., 1992), spinach (Neven et al., 1993)  (Anderson J V, 

1994), barley (Dunn et al., 1991) (Goddard, 1993 ) and 

rapeseed (Saez-Vasquez, 1993 ) (Orr, 1992 ) (Orr et al., 1995). 

Cold acclimation process not only involves reprogramming of 

gene expression, but also various modifications in the 

metabolism (Chinnusamy, 2010.) like production of 
antioxidants, abscisic acid (ABA) and compatible osmolytes 

(soluble sugars and proline) (Kishitani, 1994.) (Uemura and 

Steponkus, 1994) (Murelli, 1995) (Dörffling, 1997) (Tao et al., 

1998). Cold treatment increases membrane fluidity and thus 

helps protects cells against cold stress by maintaining cellular 

shape (TJ., 2007). There is increase in membrane rigidity 

during cold conditions; this change prevents cellular collapsing 

during extracellular freezing via creating a negative pressure in 

the cells and is an important response for cold tolerance 

(Rajashekar and Lafta, 1996) (Heidarvand L, 2010.) 

(Takahashi et al., 2013). It has been reported that during cold 

acclimation in Arabidopsis, there is an increase in clathrins 
and dynamin-related proteins in the microdomain during cold 

acclimation (Minami et al., 2009).  

 

Furthermore, many different cytoprotective proteins like 

aquaporins, P-type ATPases and tubulins accumulate during 

cold acclimation (Minami et al., 2009)  (Takahashi et al., 

2013). During cold acclimation, large scale changes occur in 

transcriptome of a cell that ultimately produce a diverse array 

of cytoprotective proteins to avoid freezing injury (Kocsy et 

al., 2010) (Winfield et al., 2010). In Arabidopsis, 

transcriptome profiling has identified around 8000 cold 
response genes. Among them around 300 genes were affected 

by cold, of which 218 showed increased transcription and 

transcription of 88 genes were decreased within seven days of 

cold treatment (Fowler, 2002). To improve cold tolerance, 

majority of experiments have been carried with the 

Arabidopsis plant (Gery, 2011). In 2012, it was reported that 

Brachypodium distachyon can be used as an important model 

to unveil the molecular mechanism associated with the cold 

response (Li, 2012). Extensive studies have identified large 

number of genes associated with the cold tolerance, but such 

data raises a simple question, which genes are most central to 

increasing freezing tolerance? This has diverted the focus 

towards genes encoding a related family of cold-regulated 

(COR) proteins, which are induced massively during cold 

acclimation (Hajela et al., 1990) (Gilmour, 2004,). These COR 

genes have been classified as cold acclimation-specific (CAS), 

low temperature-induced (LTI), cold-induced (KIN) and 

responsive to drought (RD) genes (Kurkela and Franck, 1990) 

(Yamaguchi-shinozaki, 1992)  (Monroy, 1993)  (Nordin, 

1993). The COR genes has been used to identify a family of 
Arabidopsis transcription factors known as either C-repeat 

binding factors (CBF) (CBF1, CBF2 and CBF3) or 

dehydration responsive element-binding factors (DREB) 

(DREB1B, DREB1C and DREB1A) (Stockinger, 1997)  

(Gilmour et al., 1998)  (Liu et al., 1998). CBFs/DREBs are 

transcription factors (Tfs) that bind to promoter cis element 

CRT/DRE and activate expression of cold responsive genes 

(Thomashow, 1999). It has been found that the ectopic 

transgenic over expression of CBF1/DREB1B, 

CBF2/DREB1C or CBF3/DREB1A in Arabidopsis activates 

CBF/DREB target genes at warm temperatures (GILMOUR, 
2004,) and therefore provides enhanced freezing, drought and 

salt tolerance (Jaglo-Ottosen et al., 1998) (Kasuga et al., 

1999). When plants are exposed to low temperature 

conditions, CBF transcripts start accumulating within 15 

minutes of exposure (Gilmour et al., 1998). Apart from COR 

genes, heat shock proteins (HSPs) expression are also induced 

under the effect of low temperature (Timperio et al., 2008). It 

has been further found that the bacterial cold shock proteins 

(CSPs) increases stress adaptation in multiple plant species by 

demonstrating enhanced stress tolerance in maize and rice. 

Expression of CspA and CspB enhances the growth of plants 
under the effect of a number of abiotic factors like cold, heat 

and water deficit in transgenic rice. Similarly expression of 

bacterial CSPs enhanced cold tolerance in transgenic 

Arabidopsis  (Karlson D, 2003.) (Nakaminami et al., 2006) 

(Castiglioni et al., 2008). Transcript profiling studies have 

shown that the majority of cold sensitive genes are regulated 

by CBF, ZAT12 and RAV1 transcription factors. It should be 

noted here that the regulation mechanism of the majority of 

cold-induced COS genes and cold-repressed COS is unknown 

(Vogel et al., 2005). So understanding the regulatory 

mechanism of cold sensitive genes is of prime importance in 

understanding the cold acclimation fully.  
 

Conclusion 
 

The molecular changes associated with the plant cold tolerance 

are much more complex. But taking into account the essence 

of cold tolerance, it is need of the hour to understand the 

diverse cellular changes. New information regarding the cold-

responsive pathway is continuously emerging and therefore 
making it a compulsory to gather the new information, so to 

simplify the complex changes associated with the plant 

adaptation to low temperature. It should be further noted that 

the research on low temperature changes in plants with respect 

to transcriptome, proteome and metabolome is expected to 

continue in the near future. In this review, we have gathered 

the earlier information to understand the complex network of 

molecular changes associated with the cold tolerance in plants.  
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