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INTRODUCTION

A*p denote the class of functions f(z) of the form

flzy=z7" +z ap,z" (a,=z0,n=p,pEN)
nr (1.1)
which are analytic and p-valent in the punctured unit disk U* = {z € C: 0 < |z| < 1}

Jum-Kim-Srivastava [1] defined an integral operator I f () for > 0 and for f € AJ as follows

I9f(2) = p+r(a) J3UogH 1tP f(z)dt  (neN). (1.2)

If f(z) is of the form (1.1), then

I9f(2) = 277 + 3%, (——)°a,z" (n=p,p € N). (1.3)

n+p+1

In particular, when p=1, we have
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19F(2) = 271+ By (=5)%anz" (n2p,p € N)

Let f and g be analytic in unit disk U, then g is said to be subordinate to f, written as g < f or g(z) < f(2), if there exists a
Schwartz function ®, which is analytic in U with ©(0)=0 and |w(z)| < 1(z € U) such that g(z) = f(w(z)). In particular, if the
function f is univalent in U, we have the following equivalence ([2],[3])

9(2) < f(2)(z € U) & g(0) = f(0)and g(U) < f(U).

Let A;‘, (0, b, A, B) denotes the class of functions of the form (1.1) which satisfies the condition

p— l{Z({;:f(Z)) 4 p} < plraz (1.4)

b Igf(z) 1+Bz

Where =1 < B<A<1,p€N,d>0,b non zero complex number.
We can re-write the condition (1.4) as

2051 @) +pIgf(2) |
Bz(1§f (2))' +[Bp(1-b)+Abp}IZf (2)|

<1 (1.5)

In this paper, coefficient inequalities, distortion theorem as well as closure theorem for the class A, (g, b, A, B) are obtained.
2. COEFFICIENT INEQUALITIES:
Theorem 2.1: Let f € Ay, be given by (1.1). Then f € A} (a, b, A, B) if and only if

Sl + p)(1 = B) = plbl(4 - B)] () a, < plbl(4 - B). @.1)

n+p+1

The result is sharp for the function f(z) given by

— D p|b|(A-B) ok >
f@)=z7"+ ([(n+p)(1_3)_p|b|(A_B)]) n+p+1)z% (k=pneN). (2.2)

Proof: Assuming that the inequality (2.1) holds true then from (2.1),we find that

1

| z (I{,’f(z))’ +plgf(2) Ynep M+ D) (n+ +1)oan
; < : - <1
|Bz (1£@) +Bp(1 = b) + AbpYigf(z)|  PIbICA = B) + EF=p[B(n +p) + pIbI(A = B G )
(zeU*ze(,|z| <1).
Hence, by the Maximum Modulus Theorem we have f(z) € Ay(0,b, A, B).
Conversely, suppose that f(z) € Ay (0, b, A, B).Then from (1.5) we have
| (15 @) +pIgf@) N Sy + ) ()7 an 2 »
|82 (15£(2)) + [Bp(1 — b) + AbpYIgF(2)|  [PIBICA = B) + By [B(n + p) + pIbICA — B (o )17 a2

If we choose zto be real and z — 17, we get

1
n+p+1

%[+ p)(1 - B) — plbl (4 - B)] ()" a, < pIbl(A - B).

which give (2.1).
3. DISTORTION THEOREM:

Theorem 3.1: If the function f(z) defined by (1.1) is in the class Ay (0, b, A, B). Then for 0 < |z| = r < 1, we have
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p_ (_PlIA-BY@pr? N
r (Dpﬁfﬁ)—mbKA—Bﬂ)T' S

p|b|(A-B)(2p+1)?

f@DI <77+

where equality holds true for the function

p|b|(A-B)(2p+1)?

f(@) =277 +(

[2p(1-B)-p|b|(4-B)]

) 2P

Proof: Since f(2) € A, (0,b, A, B), then from (2.1)

[2p(1 - B) — plbl (4 - B (
< p|b|(A - B).
we conclude that

p|b|(A-B)(2p+1)?
[2p(1-B)-p|b|(A-B)]

Ln=plan| < (

)

Thusfor 0 < |z| =7 < 1,

2p+1

[

If @] < 12| + Ensplan|z™ <770 + 1P Eiplan|

or

- pIbl(4-B)(2p+1)7
lf@l<r?+ ([zp(l—B)—prl(A—B)]
and

)P

|f(Z)| 2 |Z|_p —Z;’{’:p|an|zn >rP—7rP Z';.lozplanl

or

pb|(A-B)(2p+1)°

lf@lzr7?—(

[2p(1-B)-p|b|(A-B)

prr

On using (3.4) and (3.5) inequality (3.1) follows.

4. CLOSURE THEOREM

Theorem 4.1: Let

_ o
fo-1(z) =z7Pand f,(z) =z7P + ( pIbIA-B) (e tp+ 1) )z"

forn =p, then f(z) € Ay(0,b, A, B) if and only if it can be expressed in the form

[(n+p)(1-B)-p|b|(A-B)]

@) = 5o nfo(@). where p, > 0 and $i2 .yt = 1.

Proof: Let f(z) can be expressed in the form (4.1), then

f(Z) = Z‘;.lo=p—1 :unfn(z) =zP+

Then,

Sy A D DT [0+ p)(1 — B) — plbI(4 — BY] (

(n+p)(1-B)-p|b|(A-B)

Yo (prI(A—B)(n+P+1)"un
=P \[(n+p)(1-B)-p|b|(A-B)

])Z”.

1
n+p+1

= Xa=pP|bl(A = B)un = pIb|(A — B) Xy tin < p|b[(A — B).

So, from (2.1), it follows that f(z) € A} (o, b, A, B).

Conversely, let f(z) € Ay(0,b, A, B). From theorem 2.1, we have

p|b|(A-B)(n+p+1)?

™ = [(n+p)(1-B)-p|b|(4-B)

]foran.

2p(1-B)—p|b|(A-B)]

)P

) 2 el =) e+ p -5 - plbla -5l

.

g

n+p+1) n

3.1)

(3.2)

(3.3)

(3.4)

3.5)

4.1)

4.2)
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Setting

_ (n+p)(1—B)—pr|(A—B)( 1
no p|b|(A-B) n+p+1
And Hp-1 = Z‘;.lozp HUn

)? forn = p.

It follows that
f(2) = Ximp-1bnfu(2).
This completes the proof.
5. RADII OF STARLIKENESS AND CONVEXITY:
Theorem 5.1: Let the function f(z) defined by (1.1) be in the class A (a, b, 4, B). Then

(i) fis meromorphically p-valent starlike of order § (0 < § < p) in the disk |z| < r;,where

. -B)-plb|(A— Tp-5.1
1y =11(p,0,b,4, B) = min,,,,, [(HRODPAD (1 _)Tro

n .
p|b|(A-B) n+p+1/ n+é&

(ii) f is meromorphically p-valent convex of order § (0 < § < p) in the disk |z| < r,,where

1
n

_ o (n+p)(1-B)-plbl(4-B) (1 \? p(»-9)
n=n (p' o b'A' B) - mmnzp[ p|b|(A-B) (n+p+1) n(n+6)]
Proof: (i)Using definition (1.1), we observe that

zf' @+pf(2) | < Sn=p(n+p)lanllz™
zf'@+@6-p)f ()| = 2(p-8)-Ip(n—p+28)lanllz|™

<1,(zl<r;0<6<1).
This last inequality (5.3) holds true if
n+6

S (D layllzl < 1

In view of (2.1), the last inequality is true if

n+8 ) n _ ((+p)(A-B)-plb|4-B) (1 \°
Gl = s (n+p+1) 1(m=p,p €N).

which on solving gives (5.1).

(ii) Using definition (1.1), we observe that

2" @+ () SRy nn+p)lanllzl
< < 0 <
a2 @l = o0 sy nm-preaadin = b (12l <0< 8 <1).

This last inequality (5.4) holds true if

0 n( n+6)
Yoy (o)) lanllzl® < 1.

In view of (2.1), the last inequality is true if

n(n+6) (m+pA-B)—pblA-B)/ 1 \°
EICED R plbI(A— B) (n+p+1) I(n=p.p EN).

which on solving gives (5.2).
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